Table of Contents

1.0 Introduction

1.1 Introduction and Regulatory Guidance .. 1.0-1
1.2 Lead Agency ... 1.0-1
1.3 Purpose and Document Organization ... 1.0-2
1.4 Evaluation of Environmental Impacts ... 1.0-2

2.0 Project Information

3.0 Project Description

3.1 Project Location ... 3.0-1
3.2 Project Site ... 3.0-1
3.3 Surrounding Land Uses ... 3.0-1
3.4 Project History ... 3.0-2
3.5 Project Overview .. 3.0-2
3.6 Project Approvals .. 3.0-9
3.7 Relationship of Project to Other Plans ... 3.0-9

4.0 Environmental Checklist

4.1 Aesthetics ... 4.0-1
4.2 Agriculture and Forestry Resources ... 4.0-2
4.3 Air Quality .. 4.0-3
4.4 Biological Resources ... 4.0-8
4.5 Cultural Resources ... 4.0-10
4.6 Geology and Soils ... 4.0-14
4.7 Greenhouse Gases .. 4.0-16
4.8 Hazards and Hazardous Materials .. 4.0-18
4.9 Hydrology and Water Quality .. 4.0-22
4.10 Land Use and Planning .. 4.0-24
4.11 Mineral Resources .. 4.0-25
4.12 Noise .. 4.0-26
4.13 Population and Housing ... 4.0-29
4.14 Public Services .. 4.0-30
4.15 Recreation .. 4.0-31
4.16 Transportation/Traffic .. 4.0-32
4.17 Utilities and Service Systems ... 4.0-34
4.18 Mandatory Findings of Significance ... 4.0-35

5.0 References
TABLE OF CONTENTS

TABLES

Table AQ-1 Demolition-Related Criteria Pollutant and Precursor Emissions (Maximum Pounds per Day) ... 4.0-5
Table GHG-1 Demolition-Related Greenhouse Gas Emissions (Metric Tons per Year) 4.0-17
Table NOI-1 Typical Outdoor Demolition Noise Levels ... 4.0-27

FIGURES

Figure 3.0-1 Regional Vicinity ... 3.0-3
Figure 3.0-2 Project Site .. 3.0-5
Figure 3.0-3 Sylvan Middle School Layout .. 3.0-7

APPENDICES

Appendix A Facilities Assessment Report
Appendix B Air Quality Data
Appendix C Cultural Report
Appendix D Greenhouse Gas Data
1.0 INTRODUCTION
1.0 INTRODUCTION

1.1 INTRODUCTION AND REGULATORY GUIDANCE

This document contains an initial study, with supporting environmental studies, which concludes that a mitigated negative declaration is the appropriate California Environmental Quality Act (CEQA) document for the Former Sylvan Middle School Demolition Project (proposed project). This Mitigated Negative Declaration has been prepared in accordance with Public Resources Code Section 21000 et seq., and the CEQA Guidelines, California Code of Regulations Section 15000 et seq.

An initial study is conducted by a lead agency to determine whether a project may have a significant effect on the environment. In accordance with CEQA Guidelines Section 15063, an environmental impact report (EIR) must be prepared if an initial study indicates that the proposed project under review may have a potentially significant impact on the environment that cannot be initially avoided or mitigated to a level that is less than significant. A negative declaration may be prepared if the lead agency also prepares a written statement describing the reasons why the proposed project would not have a significant effect on the environment and, therefore, why it does not require the preparation of an EIR (CEQA Guidelines Section 15371). According to CEQA Guidelines Section 15070, a negative declaration is to be prepared for a project subject to CEQA when either:

a) The initial study shows there is no substantial evidence, in light of the whole record before the agency, that the proposed project may have a significant effect on the environment, or

b) The initial study identifies potentially significant effects, but:
 1) Revisions in the project plans or proposals made by or agreed to by the applicant before the proposed negative declaration is released for public review would avoid the effects or mitigate the effects to a point where clearly no significant effects would occur; and
 2) There is no substantial evidence, in light of the whole record before the agency, that the proposed project as revised may have a significant effect on the environment.

If revisions are adopted in the proposed project in accordance with CEQA Guidelines Section 15070(b), including the adoption of mitigation measures included in this document, a mitigated negative declaration can be prepared.

1.2 LEAD AGENCY

The lead agency is the public agency with primary responsibility over a proposed project. Where two or more public agencies will be involved with a project, CEQA Guidelines Section 15051 provides criteria for identifying the lead agency. In accordance with CEQA Guidelines Section 15051(b)(1), “the lead agency will normally be the agency with general governmental powers, such as a city or county, rather than an agency with a single or limited purpose.” Based on the criteria above, the San Juan Unified School District is the lead agency for the proposed project. It is common for a school district to serve as the lead agency for district projects, even when they are located within a municipality, such as Citrus Heights.
1.3 PURPOSE AND DOCUMENT ORGANIZATION

The purpose of this Initial Study is to evaluate the potential environmental impacts of the proposed Former Sylvan Middle School Demolition Project. This document is divided into the following sections:

1.0 Introduction - This section includes an introduction and describes the purpose and organization of the document.

2.0 Project Information - This section provides general information regarding the project, including the project title, lead agency and address, contact person, brief description of the project location, identification of surrounding land uses, and identification of other public agencies whose review, approval, and/or permits may be required. Also listed in this section is a checklist of the environmental factors that are potentially affected by the project.

3.0 Project Description - This section describes the proposed project in detail.

4.0 Environmental Checklist - This section describes the environmental setting and overview for each of the environmental subject areas, and evaluates a range of impacts classified as “no impact,” “less than significant impact,” “less than significant impact with mitigation incorporated,” and “potentially significant impact” in response to the environmental checklist.

5.0 References - This section identifies documents, websites, people, and other sources consulted during the preparation of this Initial Study.

1.4 EVALUATION OF ENVIRONMENTAL IMPACTS

Section 4.0, Environmental Checklist, is the analysis portion of this Initial Study. The section evaluates the potential environmental impacts of the project. Section 4.0 includes 18 environmental issue subsections, including CEQA Mandatory Findings of Significance. The environmental issue subsections, numbered 1 through 18, consist of the following:

1. Aesthetics 10. Land Use and Planning
2. Agriculture and Forestry Resources 11. Mineral Resources
3. Air Quality 12. Noise
5. Cultural Resources 14. Public Services
6. Geology and Soils 15. Recreation

Each environmental issue subsection is organized in the following manner:

The Discussion of Impacts includes a discussion of each environmental issue checklist question and describes the existing conditions and applicable regulations, as appropriate. The level of significance for each topic is determined by considering the predicted magnitude of the impact. Four levels of impact significance are evaluated in this Initial Study:
No Impact: No project-related impact on the environment would occur with project development.

Less Than Significant Impact: The impact would not result in a substantial adverse change in the environment. This impact level does not require mitigation measures.

Less Than Significant Impact With Mitigation Incorporated: An impact that may have a “substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the project” (CEQA Guidelines Section 15382). However, the incorporation of mitigation measures that are specified after analysis would reduce the project-related impact to a less than significant level.

Potentially Significant Impact: An impact that is potentially significant but for which mitigation measures cannot be immediately suggested or the effectiveness of potential mitigation measures cannot be determined with certainty, because more in-depth analysis of the issue and potential impact is needed. In such cases, an EIR is required.
This page intentionally left blank.
2.0 **PROJECT INFORMATION**
1. **Project title:** Former Sylvan Middle School Demolition Project

2. **Lead agency name and address:**
 San Juan Unified School District
 Facilities Services Division
 5320 Hemlock Street
 Sacramento, CA 95841

3. **Contact person and phone number:**
 David Burke, AICP, LEED-AP
 Director of Planning and Property Management
 Facilities Services Division

4. **Project location:**
 The project site is located at 7085 Auburn Boulevard in Citrus Heights, California, north of the intersection of Old Auburn Road and Auburn Boulevard. The school site is approximately 13 acres, with a total 57,597 square feet of building space. The project site is located approximately 3 miles east of Interstate 80, which provides regional access to the site.

5. **Project sponsor’s name and address:**
 San Juan Unified School District
 5320 Hemlock Street
 Sacramento, CA 95841
 (916) 971-7073
 Attn: David Burke

6. **General Plan designation:**
 Public (City of Citrus Heights)

7. **Zoning:**
 RD-2 – Very Low Density Residential (City of Citrus Heights)

8. **Project description:**
 The project would entail the demolition of the former Sylvan Middle School and associated facilities. All buildings on the school campus, including portable units, would be demolished and disposed of at an appropriate construction waste facility. The project would require demolition work, removal of demolished materials, and removal of vegetation, followed by site grading. All building foundations could be removed as part of the proposed project. The site would be leveled following their removal, so as to cover up any potential voids from foundation removal.

 The existing school parking lots and basketball courts may be retained. Non-native trees located near buildings would be removed, but native trees would be retained. Post-demolition, the project site would be graded and all building materials cleared.
9. **Surrounding land uses and setting:**

Sylvan Middle School (project site) consists of school buildings and the surrounding vacant land on the north, west, and south sides. The project site is bordered on the north by the Sylvan Cemetery District, and on the west by single-family residences. Across Auburn Boulevard is a commercial area consisting of restaurants and other commercial uses. Citrus Heights Elementary School is located directly southwest of the project site, on the corner of Carriage Drive and Auburn Boulevard. The project site is located approximately 1 mile southwest of downtown Citrus Heights.

10. **Environmental factors potentially affected:**

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a “potentially significant impact” as indicated by the checklist on the following pages.

- Aesthetics
- Biological Resources
- Greenhouse Gases
- Land Use and Planning
- Population and Housing
- Transportation/Traffic
- Agriculture and Forestry Resources
- Cultural Resources
- Hazards and Hazardous Materials
- Mineral Resources
- Public Services
- Utilities and Service Systems
- Air Quality
- Geology and Soils
- Hydrology and Water Quality
- Noise
- Recreation
- Mandatory Findings of Significance
11. Determination: [To be completed by the lead agency]

On the basis of this initial evaluation:

☐ I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

☒ I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

☐ I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

☐ I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect (1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and (2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

☐ I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

Signature

Date

David Burke
Printed Name

San Juan Unified School District
Lead Agency

Director of Planning and Property Management
Title
This page intentionally left blank.
3.0 PROJECT DESCRIPTION
3.1 Project Location

The project site is located at 7085 Auburn Boulevard in Citrus Heights, California (Figure 3.0-1). Citrus Heights is located in the northern part of Sacramento County. The school is located north of the intersection of Old Auburn Road and Auburn Boulevard. The project site is located approximately 3 miles east of Interstate 80, which provides regional access to the site (Figure 3.0-2).

The project site encompasses the former Sylvan Middle School Campus and all its associated buildings.

3.2 Project Site

The school was constructed in 1938, with additions and modifications over the years. The site is approximately 13 acres, with approximately 57,597 square feet of building space. The campus encompasses 30 classrooms, a library, a music room, a kitchen building, an office building, a staff building, and restrooms (Figure 3.0-3). Five portable units are located at the southern end of the campus. Basketball courts are located on the northern portion of the campus. The site is landscaped and includes mature trees.

Street access is available from Auburn Boulevard. A bus stop, accommodating Sacramento Regional Transit routes 93, 95, and 103, is located off Auburn Boulevard at the school’s main entrance. Pedestrian access to the school site is also available from Auburn Boulevard via existing pedestrian facilities.

Sylvan Middle School underwent a facilities assessment in June 2013 to evaluate the facilities needed for updates (see Appendix A). Per the facilities assessment, Sylvan Middle School was graded as D-. Because of the campus’s poor condition, the estimated cost for upgrading the physical conditions at the site is approximately $18.5 million, or a 75.4 percent replacement cost index. The index weighs the cost of new construction of the same building square footage and configured in the same location. According to the San Juan Unified School District’s 2014 Facility Master Plan, sites with a replacement cost index above 60 percent are considered better suited to be replaced or rebuilt.

The City of Citrus Heights’s General Plan land use designation for the project site is Public. According to the City’s (2011) General Plan, the Public land use designation applies to public and quasi-public facilities such as schools, hospitals, libraries, and government offices, religious places of worship, meeting halls, and similar and compatible uses. The project site is zoned RD-2 (Very Low Density Residential).

3.3 Surrounding Land Uses

The project site is bordered on the north by the Sylvan Cemetery District, on the west by single-family residences, on the east by Auburn Boulevard, and on the south by Old Auburn Road. Across Auburn Boulevard is a commercial area, with restaurants and other commercial uses. Citrus Heights Elementary School is located directly southwest of the project site, on the corner of Carriage Drive and Auburn Boulevard. The project site is located approximately 1 mile southwest of downtown Citrus Heights.
3.0 PROJECT DESCRIPTION

3.4 PROJECT HISTORY

San Juan Unified School District (District) is located in Sacramento County. It was formed in 1863 as the Sylvan Elementary School in what was then a small rural community (SJUSD 2014). The District encompasses the city of Citrus Heights, parts of the city of Rancho Cordova, and the unincorporated communities of Carmichael, Fair Oaks, North Highlands, and Orangevale. The District also serves the neighborhoods of Foothill Farms, Gold River, and Arden-Arcade. The District covers 77.12 square miles with a population of 321,293 according to the 2010 Census. Most of the District buildings were built or renovated in the 1950s and ‘60s; the District is actively working to update its facilities.

Measure S was passed in November 1998, and Measure J was passed in November 2002. Passage of these measures resulted in mostly repair and renovation projects, with some new construction, such as multipurpose buildings, classrooms, and gyms. The District is currently in the final phases of completing projects under Measure J. Measure N was passed in November 2012 and is intended to continue to provide repairs and upgrades to District facilities.

The demolition of the former Sylvan Middle School is funded by these bond measures and is aimed at helping the District “right size.” The 1970s and early 1980s saw continued growth with a steady increase in enrollment, with another growth spurt in the late 1980s that necessitated adding several more schools to the District (SJUSD 2014). Through the 1990s, the District experienced stable enrollment with minor fluctuations between 47,000 and 48,000 students. Another growth period within the District boundaries pushed enrollment to an all-time high of 52,212 students in 2003. Enrollment then began to decline through 2008, decreasing to the 47,000-student range until rising to 49,035 as of the 2013/2014 school year. The decrease in the number of students enrolled in recent years resulted in the closure and repurposing of a number of school sites and left other schools under-enrolled for their size.

3.5 PROJECT OVERVIEW

The project would entail the demolition of the former Sylvan Middle School and associated facilities. All buildings on the school campus, including portable units, would be demolished and disposed of at an appropriate construction waste facility. The project would require demolition work, removal of demolished materials, and removal of vegetation, followed by site grading. All building foundations could be removed as part of the proposed project. The site would be leveled following their removal, so as to cover up any potential voids from foundation removal.

It is anticipated at this time that the existing school parking lots and basketball courts may be retained, though the air quality and greenhouse gas analysis conservatively assumes their removal. Because ornamental trees on the site are located close to the existing buildings, they require removal as part of the project. However, the mature, native trees on the site would be retained, although some tree trimming would be required. Post-demolition, the project site would be graded and all building materials would be cleared.

DESTRUCTION ACTIVITIES

Demolition would take place over approximately one month (approximately 20 days of demolition activity), and is anticipated to commence in January 2017. Vehicles would access the site via Auburn Boulevard. Roads would not be closed during construction, and all road access would be maintained during demolition. The project would entail approximately 300 demolition-related truck trips over the entire period of demolition, which would be round trips to and from an appropriate construction waste facility. Approximately 15 round trips would be necessary to accommodate demolition workers to and from the project site for the duration of the project.
FIGURE 3.0-2
Project Site
Legend
- Project Site

Source: Sacramento County (2016); ESRI.
FIGURE 3.0-3
Sylvan Middle School Layout
Not To Scale
3.0 PROJECT DESCRIPTION

Equipment would include an excavator, backhoe, bobcat, forklift, compactor, scraper, front loader, jackhammer, pile driver, and electric lift.

3.6 PROJECT APPROVALS

As the lead agency, the San Juan Unified School District has the ultimate authority for project approval or denial. As such, the following approvals would be required from the District Board:

- Approval of demolition plans
- Approval of demolition contractor

The District, per Government Code Sections 53090–53097.5, does not require grading or building permits from the City of Citrus Heights.

3.7 RELATIONSHIP OF PROJECT TO OTHER PLANS

The District serves as the CEQA lead agency and has jurisdiction over projects located on District property. However, Sylvan Middle School is located in Citrus Heights. As such, and to determine the potential for impacts in the city, this Initial Study incorporates by reference the City of Citrus Heights General Plan. The document uses the General Plan to establish the existing setting and thresholds of significance for potential environmental impacts in the city. The 2011 General Plan was adopted by the Citrus Heights City Council on August 11, 2011. The City released an updated General Plan, Environmental Impact Report, and Greenhouse Gas Reduction Plan in 2011.
This page intentionally left blank.
4.0 Environmental Checklist
4.0 ENVIRONMENTAL CHECKLIST

<table>
<thead>
<tr>
<th>4.0-1</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

4.1 AESTHETICS. Would the project:

a) Have a substantial adverse effect on a scenic vista?
☐ ☐ ☐ ☒

b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?
☐ ☐ ☐ ☒

c) Substantially degrade the existing visual character or quality of the site and its surroundings?
☐ ☐ ☐ ☒

d) Create a new source of substantial light or glare that would adversely affect day or nighttime views in the area?
☐ ☐ ☐ ☒

DISCUSSION OF IMPACTS

a, c) While not specifically defined by CEQA or the City of Citrus Heights, scenic vistas are typically described as areas of natural beauty with features such as topography, watercourses, rock outcrops, and natural vegetation that contribute to the landscape’s quality. There are no scenic vistas, including designated scenic highways, located in the project vicinity of or in Citrus Heights (Citrus Heights 2011). The project’s visual character is that of an institutional building surrounded by residential development. The project site is vacant and not currently in use. The proposed project would change the visual character of the area because it would demolish vacant buildings that could otherwise become dilapidated. Building removal would not substantially affect scenic vistas or result in a negative change in the visual character of the area. Therefore, the project would have **no impact** on scenic vistas and visual character.

b) State Route (SR) 160 in south Sacramento County is an officially designated scenic highway (Caltrans 2013), located approximately 40 miles southwest of the project site. There are no officially designated scenic highways in the project vicinity (Caltrans 2013). Therefore, the project would not substantially damage scenic resources, including trees, rock outcroppings, and/or historic buildings, within a state scenic highway. The project would have **no impact**.

d) The visual character of the area is characterized by the surrounding development, which includes commercial and single-family residential structures. The existing buildings on the project site would be demolished, including on-site lighting. Therefore, the proposed project would remove sources of light and glare on the project site, thereby reducing light and glare in the project area. As such, the project would have **no impact**.

Mitigation Measures

None required.
4.2 AGRICULTURE AND FORESTRY RESOURCES

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997), prepared by the California Department of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state’s inventory of forestland, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. Would the project:

- a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to nonagricultural use?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

- b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

- c) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to nonagricultural use?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

- d) Conflict with existing zoning for, or cause rezoning of, forestland (as defined in Public Resources Code Section 12220(g), timberland (as defined in Public Resources Code Section 4526), or timberland zoned Timberland Production (as defined in Public Resources Code Section 51104(g))?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

- e) Result in the loss of forestland or conversion of forestland to non-forest use?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION OF IMPACTS

a–e) The project is located in an urbanized area on a developed site. The project site is not designated as Prime or Unique Farmland or Farmland of Statewide Importance on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency (DOC 2014). The project site is not subject to a Williamson Act contract. Additionally, the project site does not meet the definition of forestland in Public Resources Code Section 12220(g) due to its location in an intensely developed area, which would preclude the management of any forest resources. Therefore, the proposed project would not involve direct or indirect conversion of farmland to nonagricultural use or conversion of forestland to non-forest use. **No impact** would occur.

Mitigation Measures

None required.
4.3 AIR QUALITY. Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:

a) Conflict with or obstruct implementation of the applicable air quality plan?	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
d) Expose sensitive receptors to substantial pollutant concentrations?	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
e) Create objectionable odors affecting a substantial number of people?	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact

DISCUSSION OF IMPACTS

a) The Sacramento Metropolitan Air Quality Management District (SMAQMD) coordinates the work of government agencies, businesses, and private citizens to achieve and maintain healthy air quality for the Sacramento area. The SMAQMD develops market-based programs to reduce emissions associated with mobile sources, processes permits, ensures compliance with permit conditions and with SMAQMD rules and regulations, and conducts long-term planning related to air quality.

The Citrus Heights portion of Sacramento County has been designated a nonattainment area for federal ozone and fine particulate matter (PM2.5) air quality standards (CARB 2015), so the SMAQMD is required to submit air quality plans and rate-of-progress milestone evaluations in accordance with the federal Clean Air Act. The SMAQMD air quality attainment plans and reports, which include the Sacramento Regional 8-Hour Ozone 2011 Reasonable Further Progress Plan (2008), the PM2.5 State Implementation Plan (SIP) (2013), and the PM10 Implementation/Maintenance Plan and Re-Designation Request for Sacramento County (2010), present comprehensive strategies to reduce the ozone precursor pollutants (reactive organic gases [ROG] and nitrous oxides [NOX]) as well as particulate matter (PM) emissions from stationary, area, mobile, and indirect sources. The Sacramento Regional 8-Hour Ozone 2011 Reasonable Further Progress Plan includes information and analyses to fulfill Clean Air Act requirements for demonstrating reasonable further progress toward attaining the 8-hour ozone national ambient air quality standards (NAAQS) for the Sacramento region. In addition, this plan establishes an updated emissions inventory and maintains existing motor vehicle emission budgets for transportation conformity purposes. The PM2.5 SIP attempts to fulfill the requirements of the US Environmental Protection Agency (EPA) to redesignate Sacramento County from nonattainment to attainment of the PM2.5 national ambient air quality standards. The PM10
Implementation/Maintenance Plan and Re-Designation Request for Sacramento County
attempts to maintain PM$_{10}$ attainment status.

According to SMAQMD guidance (2011), if the project results in a change in a designated
land use and corresponding substantial increases in vehicle miles traveled (VMT), the
resultant increase in VMT may be unaccounted for in regional emissions inventories
contained in the regional air quality control plans described above, which are based on
local planning documents and general plans. Substantial increases in VMT that are not
accounted for in the emissions inventory of these air quality plans may conflict with these
air quality plans and therefore result in a contribution to the region’s existing air quality
nonattainment and/or maintenance status.

After demolishing the existing structures, the site would be vacant of all improvements and
the property would be subject to sale. The future owner or potential use on the site is not
known at this time. However, any future development on the site would be required to
comply with the City’s General Plan designation or amend the designation if the use would
not be consistent. In the former case, there would be no change with regard to
assumptions for the site in existing air quality plans. If the General Plan designation is
changed, the potential inconsistencies with air quality plans would be considered at that
time. The proposed project would not conflict with the Citrus Heights General Plan and
would not result in any increase in population or employment growth. Therefore, the
proposed project would not result in a long-term increase of regional criteria air pollutants
that would conflict with or obstruct implementation of the applicable air quality plans.

The project would not result in a change in a designated land use or substantially increase
VMT beyond that accounted for in the regional emissions inventories contained in the
applicable regional air quality control plans. Therefore, the project would not conflict with
the Sacramento Regional 8-Hour Ozone 2011 Reasonable Further Progress Plan, PM$_{2.5}$ State
Implementation Plan, or the PM$_{10}$ Implementation/Maintenance Plan and Re-Designation
Request for Sacramento County. There would be no impact.

b) The proposed project would not include the provision of new permanent stationary or
mobile sources of emissions; therefore, the proposed project would not generate
quantifiable criteria emissions from long-term operations. The project does not propose
any new buildings and therefore no permanent source of stationary source emissions. In
addition, once completed the project would not result in a permanent increase in traffic.
Therefore, new permanent stationary or mobile sources of emissions were not quantified,
as the project would not result in such emissions.

Demolition-generated emissions are short term and of temporary duration, lasting only as
long as demolition activities. Off-road construction equipment is often diesel-powered and
can be a substantial source of NO$_x$ emissions, in addition to PM$_{10}$ and PM$_{2.5}$ emissions.
Worker commute trips are dominant sources of ROG emissions. Construction activities
would be subject to SMAQMD Rule 403, which requires taking reasonable precautions to
prevent the fugitive dust emissions, such as applying water or chemical to all exposed
surfaces (i.e., soil piles, graded areas, unpaved parking areas, access roads, etc.) two
times daily; covering or maintaining at least 2 feet of freeboard space on haul trucks
transporting soil, sand, or other loose material across the site; covering all haul trucks
transporting material off-site; using wet power vacuum street sweepers to remove all visible
trackout mud or dirt from adjacent public roads at least once a day; and limiting on-site
vehicle speeds to 15 miles per hour.
Predicted maximum daily construction-generated emissions for the project are summarized in Table AQ-1. As shown, project emissions resulting from construction would not exceed the SMAQMD significance criterion of 85 pounds per day of NOX.

Table AQ-1
DEMOLITION-RELATED CRITERIA POLLUTANT AND PRECURSOR EMISSIONS
(MAXIMUM POUNDS PER DAY)

<table>
<thead>
<tr>
<th>Demolition Activities</th>
<th>Reactive Organic Gases (ROG)</th>
<th>Nitrogen Oxide (NOX)</th>
<th>Carbon Monoxide (CO)</th>
<th>Sulfur Dioxide (SO2)</th>
<th>Coarse Particulate Matter (PM10)</th>
<th>Fine Particulate Matter (PM2.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition – maximum daily emissions</td>
<td>4.45</td>
<td>46.37</td>
<td>39.36</td>
<td>0.05</td>
<td>6.38</td>
<td>2.71</td>
</tr>
<tr>
<td>SMAQMD Potentially Significant Impact Threshold</td>
<td>—</td>
<td>85 pounds/day</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Exceed SMAQMD Threshold?</td>
<td>—</td>
<td>No</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Source: CalEEMod version 2013.2.2. See Appendix B for emission model outputs.
Notes: Emission projections account for the demolition of 57,597 square feet of building space and 756 tons of hard scape.

In addition, the proposed project has the potential to exceed the air district’s PM standard. While construction impacts would be temporary and would cease once construction is complete, they nevertheless would have an effect on particulate matter emissions during construction activities. To assess PM10 generated during construction activities, the SMAQMD employs a screening criteria to assist in determining if PM emissions from constructing a project in Sacramento County would contribute to a significant impact. Areas of daily disturbance in excess of the SMAQMD screening criteria (15 acres) would be considered potentially significant. The project site is approximately 13 acres; therefore, project construction would not disturb 15 acres of ground. Because the project site is below the screening criteria threshold, the project would not exceed PM standards. Consequently, the project would not violate any air quality standard or contribute substantially to an existing or projected air quality violation. Project impacts would be less than significant.

c) Because of the region’s nonattainment status for ozone and PM2.5, the SMAQMD considers projects that are consistent with all applicable air quality plans intended to bring the basin into attainment for all criteria pollutants, and below SMAQMD significance thresholds of the ozone precursor pollutants (i.e., ROG and NOX), to have less than significant cumulative impacts. As discussed in Item a), the proposed project would not conflict with either the Sacramento Regional 8-Hour Ozone 2011 Reasonable Further Progress Plan, the PM2.5 State Implementation Plan, or the PM10 Implementation/Maintenance Plan and Re-Designation Request for Sacramento County. As discussed in Item b), predicted project emissions would not exceed SMAQMD significance thresholds. Therefore, since the project would not conflict with applicable air quality plans or exceed SMAQMD significance thresholds, cumulative impacts would be less than significant per the SMAQMD significance threshold. The project’s contribution would be less than significant.
d) Sensitive land uses are generally defined as locations where people reside or where the presence of air emissions could adversely affect the use of the land. Typical sensitive receptors include residents, schoolchildren, hospital patients, and the elderly. There are residential land uses in the project vicinity.

Potential hazards could be created during the course of demolishing the school, given that the buildings could potentially contain hazardous materials, such as asbestos-containing building materials (ACBM) and lead-based paint. These materials may release hazardous materials into the environment if disturbed or improperly handled, such as during project demolition activities.

Prior to demolition, California Code of Regulations (CCR) Title 8 Sections 1529 and 5208 require that a state-certified risk assessor conduct a risk assessment and/or paint inspection of all structures constructed prior to 1978 for the presence of asbestos. If such hazards are determined to exist on-site, the risk assessor would prepare a site-specific hazard control plan detailing ACBM removal methods and specific instructions for providing protective clothing and gear for abatement personnel. If necessary, the District would be required to retain a state-certified ACBM removal contractor (independent of the risk assessor) to conduct the appropriate abatement measures as required by the plan. Wastes from abatement activities would be disposed of at a landfill licensed to accept such waste. Once all abatement measures have been implemented, the risk assessor would conduct a clearance examination and provide written documentation to the District that testing and abatement have been completed in accordance with all federal, state, and local laws and regulations.

Regulations and guidelines also pertain to abatement of and protection from exposure to lead-based paint, including Construction Safety Order 1532.1 from Title 8 of the CCR. In California, lead-based paint abatement must be performed and monitored by contractors with appropriate certification from the California Department of Public Health. Compliance with existing regulations would ensure a less than significant impact due to exposure to substantial pollutant concentrations.

e) The occurrence and severity of odor impacts depend on numerous factors, including the nature, frequency, and intensity of the source; wind speed and direction; and the sensitivity of the receptors. While offensive odors rarely cause any physical harm, they can be unpleasant and lead to distress among the public and generate citizen complaints to local governments and regulatory agencies. Projects with the potential to frequently expose members of the public to objectionable odors would be deemed to have a significant impact.

Project demolition would involve the use of a variety of gasoline- or diesel-powered equipment that would emit exhaust fumes. Exhaust fumes, particularly diesel exhaust, may be considered objectionable by some people. However, construction-generated emissions would occur intermittently throughout the workday and would dissipate rapidly within increasing distance from the source. Additionally, SMAQMD Rule 402 addresses the exposure of emissions that may cause nuisance to any substantial number of people. The proposed project would be subject to Rule 402, and any objectionable odors resulting from the proposed project would be short-term and limited to the construction period. Furthermore, idling times of construction equipment would be minimized as required by the state airborne toxics control measure (Title 13, Section 2485, of the CCR). Short-term construction activities would not expose a substantial number of people to frequent odorous emissions. In addition, the proposed project would not result in the installation of
any equipment that would be considered major odor-emission sources. As a result, potential exposure of sensitive receptors to odorous emissions would be less than significant.

Mitigation Measures

None required.
4.4 BIOLOGICAL RESOURCES

Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or US Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or US Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>c) Have a substantial adverse effect on federally protected wetlands, as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal wetlands, etc.), through direct removal, filling, hydrological interruption, or other means?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>f) Conflict with the provisions of an adopted habitat conservation plan, natural community conservation plan, or other approved local, regional, or state habitat conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION OF IMPACTS

a) The surrounding area includes urban and residential development and is not considered to be an area of significant biological importance by the California Department of Fish and Wildlife (CDFW). The project site is completely developed and includes school buildings, a parking lot, and paved outdoor areas. Site vegetation is sparse and is limited to a variety of native and ornamental trees.

Wildlife

Because of the developed nature of the project site, wildlife species that would potentially be on-site is limited. Common species such as western gray squirrel (Sciurus griseus), raccoon (Procyon lotor), and opossum (Didelphis virginiana) have the potential to forage on the project site. The buildings provide suitable roosting habitat for a variety of bat species, such as the pallid bat (Antrozous pallidus) and Yuma myotis (Myotis yumanensis). The project site contains suitable nesting habitat for a variety of common bird species including black phoebe (Sayornis nigricans), mourning dove (Zenaida macroura), and
rock dove (Columba livia). The trees on the project site and in the vicinity provide suitable nesting habitat for a variety of common birds including mourning dove, rock dove, and house finch (Haemorhous mexicanus), as well as moderately suitable habitat for Cooper’s hawk (Accipiter cooperii), white-tailed kite (Elanus leucurus), and other raptors. No other wildlife is expected to occur on the project site or in the vicinity.

Trees on the project site provide suitable nesting habitat for a variety of birds protected under the Migratory Bird Treaty Act (MBTA). Although most of the trees would be retained, ornamental trees adjacent to buildings would require removal because of their proximity to existing buildings. Although the project area contains suitable nesting habitat for birds protected under the MBTA, project demolition is expected to occur outside the nesting bird season. As such, the project would have a less than significant impact on sensitive species.

b–d) The project site is fully developed and the campus does support any natural communities. Therefore, the proposed project would have no impact on sensitive habitats, wetlands or other waters of the United States, or migration corridors.

e) The project site contains native and ornamental trees. Because the ornamental trees are located closer to the buildings, their removal would be required to demolish the structures. The City of Citrus Heights has tree preservation and protection regulations in place to protect native oak trees and other mature trees. The proposed project would not result in the removal of any trees protected under City regulation; however, the proposed project would require trimming of trees located adjacent to campus buildings, which could result in a potentially significant impact on the health of the trees. Implementation of mitigation measure MM BIO-1 would protect the trees if trimming is required. As such, less than significant impacts would result.

f) The project site is located in Citrus Heights, which is not in an area with an approved habitat conservation program or natural community conservation plan. Therefore, the proposed project would have no impact.

Mitigation Measures

MM BIO-1 Any tree pruning or trimming required as a result of project-related activities shall be carried out under the supervision of a certified arborist in order to ensure the continued health of the tree.

Timing/Implementation: Prior to and during construction

Enforcement/Monitoring: San Juan Unified School District
4.5 CULTURAL, TRIBAL CULTURAL, AND PALEONTOLOGICAL RESOURCES, Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5?</td>
<td></td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td>b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5?</td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Disturb any human remains, including those interred outside of formal cemeteries?</td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code Section 21074?</td>
<td></td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td>e) Directly or indirectly destroy a unique paleontological resource or site or unique geological feature?</td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION OF IMPACTS

a) Michael Baker International (2016) prepared a separate letter report pertaining to cultural resources for the project. Information in this discussion was taken from that letter report.

Cultural resources include historical resources and archaeological resources (as defined in Public Resources Code Section 15064.5). Cultural resources include any object, building, structure, site, area, place, record, or manuscript that a lead agency determines to be historically significant or significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California. Generally, a resource shall be considered by the lead agency to be historically significant if the resource meets the criteria for listing in the California Register of Historical Resources (CCR Title 14(3), Section 15064.5(a)(3)).

Identification Efforts

In support of the project, Michael Baker International cultural staff conducted a records search at the North Central Information Center (NCIC), an intensive-level archaeological field survey, and historic map research of the project area. The intent of the records search and the field survey was to identify cultural resources in the project area that may be impacted by the project (see Appendix C).

Records Search

To determine the presence of previously identified cultural resources, Michael Baker International staff conducted a records search (File No.: SAC-16-125) for the project area at the NCIC on August 4, 2016. The NCIC, as part of the California Historical Resources Information System, California State University, Sacramento, an affiliate of California Office of Historic Preservation (OHP), is the official state repository of cultural resource records and reports for Sacramento County.
Results

Two cultural resources studies had been conducted within the project area and three cultural resource studies had been conducted within a quarter-mile. Fourteen cultural resources were identified within the quarter-mile search radius of the project area. Only one cultural resource was identified within the project area, with the resource description as follows:

- Sylvan Middle School (P-34-000618) - This school complex consists of 18 single-story buildings built in different phases between 1938 and 1967. It was evaluated and determined not eligible for the National Register or California Register due to a lack of integrity of design, setting, materials, workmanship, and feeling. Further, several middle school campuses in the greater Sacramento area exhibit similar design features and this example is not unique. Due to its lack of integrity and architectural and historical significance, the State Historic Preservation Office concurred with the eligibility evaluation on August 8, 2001.

The Sylvan Middle School is therefore not a historical resource for the purposes of CEQA.

Historical Map Review

Michael Baker International reviewed historical maps for archaeological, ethnographic, and historical information about the project area and its vicinity to determine the presence of cultural resources. This review included:

- Plat of Township 10N Range 6 East Mount Diablo Base Meridian
- Antelope, Calif., 7.5-minute topographic quadrangle
- Citrus Heights, Calif., 7.5-minute topographic

Results

- No features are depicted within the project area in the 1866 Plat of Township 10N Range 6 East.
- The Antelope, Calif., topographic quadrangle depicts the Sylvan School (P-34-004036) within the project area. No additional features are present.
- The Citrus Heights, Calif., topographic quadrangle depicts the Sylvan Middle School (P-34-000618) within the project area. No other features are present.

Field Survey

Michael Baker International archaeologist Michael Elliott conducted an archaeological field survey of the project area on August 18, 2016. The survey included all components of the school compound including athletic fields, play areas, landscaping, gravel lots, and fence lines. Visible surface areas were surveyed using 1- to 5-meter north/south transects. The entire project area was surveyed with 100 percent coverage and visibility from 20-90 percent. Special attention was given to rodent back-dirt.
4.0 ENVIRONMENTAL CHECKLIST

Results

No cultural materials were identified during the field survey.

As described previously, there are no historical resources within the project area. The Sylvan Middle School (P-34-000618) was evaluated and determined not eligible for inclusion in either the National Register of Historic Places or the California Register of Historical Resources, and there are no known archaeological sites. Therefore, the project would have **no impact** on historical resources.

b, c) Project construction would involve ground-disturbing activities that could result in the unanticipated or accidental discovery of archaeological deposits, historical resources, or human remains. If human remains are found, California Health and Safety Code Section 7050.5 requires no further excavation or disturbance of the site or any nearby area reasonably suspected to overlie adjacent remains until the county coroner has determined whether or not the remains are subject to the coroner’s authority. If the human remains are of Native American origin, the coroner must notify the Native American Heritage Commission within 24 hours of this identification. The commission will identify a Native American most likely descendent to inspect the site and provide recommendations for the proper treatment of the remains and associated grave goods. If other cultural resources are discovered during project construction, implementation of mitigation measure **MM CR-1** would reduce impacts to a **less than significant** level.

d) Tribal cultural resources are defined in CEQA as a site, feature, place, cultural landscape, sacred place, or object with cultural value to a California Native American tribe, which may include non-unique archaeological resources previously subject to limited review under CEQA.

Tribal cultural resources are identified during Assembly Bill (AB) 52 consultation. No tribes requested consultation under AB 52 with the District. Therefore, there are no known tribal cultural resources (as defined in Public Resources Code Section 21074) within the project area, and the project would have **no impact** on tribal cultural resources.

e) Paleontological resources are fossilized remains or traces of multicellular invertebrate and vertebrate animals and multicellular plants, including their imprints, from a previous geologic period. Fossil remains such as bones, teeth, shells, and leaves are found in geologic deposits or rock formations, where they were originally buried.

Project construction would involve ground-disturbing activities that could result in the unanticipated or accidental discovery of paleontological resources. If paleontological resources are discovered during project construction, implementation of mitigation measure **MM CR-2** would reduce impacts to a **less than significant** level.

Mitigation Measures

MM CR-1
If deposits of prehistoric or historical materials are encountered during demolition activities, all work within 50 feet shall be halted until a qualified archaeologist can evaluate the findings and provide recommendations. Prehistoric materials can include flaked-stone tools (e.g., projectile points, knives, choppers) or obsidian, chert, or quartzite toolmaking debris; culturally darkened soil (i.e., midden soil often containing heat-affected rock, ash, and charcoal, shellfish remains, and cultural materials); and stone milling equipment...
(e.g., mortars, pestles, handstones). Historical materials may include wood, stone, or concrete footings, walls, and other structural remains; debris-filled wells or privies; and deposits of wood, metal, glass, ceramics, and other refuse.

Timing/Implementation: During demolition activities

Enforcement/Monitoring: SJUSD Planning and Property Management Facilities Services Division

MM CR-2

In the event that paleontological resources are unearthed during demolition activities, the contractor shall cease all earth-disturbing activities within a 50-foot radius of the area of discovery and shall retain a qualified paleontologist to evaluate the significance of the finding and appropriate course of action.

Timing/Implementation: During demolition activities

Enforcement/Monitoring: SJUSD Planning and Property Management Facilities Services Division
4.6 GEOLOGY AND SOILS. Would the project:

<table>
<thead>
<tr>
<th>a)</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>ii)</td>
<td>Strong seismic ground shaking?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>iii)</td>
<td>Seismic-related ground failure, including liquefaction?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>iv)</td>
<td>Landslides?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b)</td>
<td>Result in substantial soil erosion or the loss of topsoil?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c)</td>
<td>Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d)</td>
<td>Be located on expansive soil, as defined in Table 18-1-8 of the Uniform Building Code (1994), creating substantial risks to life or property?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e)</td>
<td>Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION OF IMPACTS

a)

i. The project site and surrounding properties are flat and developed with urban uses. The nearest fault line is the Foothills fault, located 35 miles east of the project site (USGS 2016). The project site itself is not located within an Alquist-Priolo Special Studies Zone. Therefore, the project site is not considered to be at a significant risk of surface rupture of a known earthquake fault. The project entails the demolition of existing structures and no new structures are currently proposed on the project site. Therefore, the project would result in **no impact**.

ii. As described previously, the project is not located in seismically active region as there are no fault lines located in Sacramento County (USGS 2016). The project would demolish existing structures. No new structures are proposed to be built on the project site. Therefore,
the project would not expose people or structures to strong seismic ground shaking and
the project would have no impact

iii. See Item a. ii).

iv. As described above, the project site and surrounding properties are flat and developed
with urban uses. No new structures are proposed to be built on the project site. Therefore,
the potential for landslide on the project site is minimal and the project would have no impact

b) The proposed project would not cause substantial erosion or loss of topsoil because the
project site is flat. Demolition activities would disturb soils, which could lead to erosion.
However, the project site soils have low soil erosion and wind erodibility, which signifies low
erosion potential (UCS and NRCS 2016).

The project would also be required to prepare and comply with a stormwater pollution
prevention plan (SWPPP) because the project site is larger than 1 acre. The SWPPP would
include a schedule for the implementation and maintenance of erosion control measures
and a description of erosion control practices, including appropriate design details and a
time schedule. The SWPPP would consider the full range of erosion control best
management practices (BMPs), including any additional site-specific and seasonal
conditions. Examples of typical construction BMPs include, but are not limited to, using
temporary mulching, seeding, or other suitable stabilization measures to protect
uncovered soils and installing sediment control devices such as gravel bags, inlet filters,
fiber rolls, or silt fences to reduce or eliminate sediment and other pollutants from
discharging to the drainage system or receiving waters. BMPs are recognized as effective
methods to prevent or minimize the potential releases of pollutants into drainages, surface
water, or groundwater through erosion control mechanisms. Compliance with the BMPs
would minimize erosion during and after building demolition. Therefore, this impact would
be less than significant.

c, d) Landslide activity is a function of slope, soil type and depth, soil moisture, bedrock, and
seismic activities. Landslides include a wide range of ground movement, such as rockfalls,
deep failure of slopes, and shallow debris flows (mudflows). The topography of the project
site is level with 0 to 8 percent slopes (UCD and NRCS 2016). The areas surrounding the
project site are urban and do not have the potential for landslides.

Based on regional soil data, site soils have a high runoff potential and are not expansive
(UCD and NRCS 2016). Shrinking and swelling of soils can cause damage to building
foundations, roads, underground utilities, and other structures. However, no new structures
are proposed to be built. Therefore, this impact would be less than significant.

e) No septic tanks or alternative wastewater disposal systems would be associated with the
project. The project would have no impact.

Mitigation Measures

None required.
4.7 GREENHOUSE GASES. Would the project:

a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment? ☑ ☐ ☐ ☐

b) Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gasses? ☑ ☐ ☐ ☐

DISCUSSION OF IMPACTS

a) None of the components of the proposed project would include the provision of new permanent stationary or mobile sources of emissions; therefore, the proposed project would not generate quantifiable greenhouse gas (GHG) emissions from long-term operations. The project does not propose any new buildings and therefore no permanent source of stationary source emissions or increases in traffic. New permanent stationary or mobile sources of emissions were not quantified.

The proposed project would result in the generation of GHG emissions during demolition activities. The assessment of demolition-generated GHG emissions below is based on guidance from the SMAQMD, which has developed GHG thresholds to provide a uniform scale to measure the significance of land use development projects in its jurisdiction. These thresholds are intended to evaluate a project for consistency with statewide GHG reduction targets established in AB 32, the Global Warming Solutions Act, particularly for emissions occurring by 2020.

For the evaluation of construction-related emissions, which includes demolition activities, the SMAQMD recommends using the mass emission threshold of 1,100 metric tons of carbon dioxide equivalents (CO₂e) per year. Therefore, for the purposes of this analysis, the proposed project was compared to that SMAQMD construction-level significance threshold. Compliance with this threshold will be part of the solution to the cumulative GHG emissions problem, rather than hinder the State’s ability to meet its goals of reduced statewide GHG emissions under AB 32. In the case that estimated emissions fall below these thresholds, a project is considered less than significant in terms of its contribution to GHG emissions. If estimated emissions surpass this thresholds, a project’s contribution would be considered significant.

The approximate quantity of annual GHG emissions generated by demolition activities is shown in Table GHG-1. As shown, construction would generate approximately 49 metric tons of CO₂e. Therefore, emissions would not exceed SMAQMD significance thresholds for construction-generated GHG emissions. This impact would be less than significant.
b) The State of California has adopted several policies and regulations for the purpose of reducing GHG emissions. On December 11, 2008, the California Air Resources Board adopted the AB 32 Scoping Plan to achieve the goals of AB 32. The Scoping Plan establishes an overall framework for the measures that will be adopted to reduce California’s GHG emissions. The project is subject to compliance with AB 32, which is designed to reduce statewide GHG emissions to 1990 levels by 2020. As identified above, the project-generated GHG emissions would not surpass SMAQMD greenhouse gas significance thresholds, which were prepared with the purpose of complying with the requirements of and achieving the goals of AB 32. Therefore, the project would not conflict with the State’s goals listed in AB 32 or in any state policies adopted to reduce GHG emissions.

The project would not conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHG emissions and therefore represents a less than significant impact.

Mitigation Measures

None required.
4.0 ENVIRONMENTAL CHECKLIST

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

4.8 HAZARDS AND HAZARDOUS MATERIALS

Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

e) For a project located within an airport land use plan area or, where such a plan has not been adopted, within 2 miles of a public airport or a public use airport, would the project result in a safety hazard for people residing or working in the project area?

f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?

g) Impair implementation of, or physically interfere with, an adopted emergency response plan or emergency evacuation plan?

h) Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

DISCUSSION OF IMPACTS

a, b) Public health is potentially at risk whenever hazardous materials are used. It is necessary to differentiate between the “hazard” of these materials and the acceptability of the “risk” they pose to human health and the environment. A hazard is any situation that has the potential to cause damage to human health and the environment. The risk to health and public safety is determined by the probability of exposure, in addition to the inherent toxicity of a material. Factors that can influence the health effects when human beings are exposed to hazardous materials include the dose to which the person is exposed, the frequency of exposure, the duration of exposure, the exposure pathway (route by which a chemical enters a person’s body), and the individual’s unique biological susceptibility.
Both the EPA and the US Department of Transportation (DOT) regulate the transport of hazardous waste and materials, including transport via highway. The EPA administers permitting, tracking, reporting, and operations requirements established by the Resource Conservation and Recovery Act. The DOT regulates the transportation of hazardous materials through implementation of the Hazardous Materials Transportation Act. This act administers requirements for container design and labeling, as well as for driver training. The established regulations are intended to track and manage the safe interstate transportation of hazardous materials and waste. CCR Title 22 (Social Security, Division 4.5, Environmental Health Standards for the Management of Hazardous Waste) defines hazardous and special waste, identifies federal and state hazardous waste criteria, and regulates the storage, transportation, and disposal of waste. Title 22 was created to regulate the hazardous wastes generated by factories or similar sources, but soil excavated during construction may also be regulated. If contaminated soil meets Title 22 waste criteria and will be excavated during construction, the soil must be handled in a manner consistent with these regulations. These regulations are also found in Title 26. State and local agencies enforce the application of these acts and coordinate safety and mitigation responses in the case that accidents involving hazardous materials occur.

Project demolition activities could involve limited transport, use, and disposal of hazardous materials. The project would be required to ensure proper transportation, waste treatment, and disposal of hazardous materials during demolition activities in accordance with all applicable federal, state, and local laws, as cited above. Additionally, as discussed above in subsection 4.3, Air Quality, potential hazards could be created during the course of demolishing the school, given that the buildings could potentially contain hazardous materials, such as asbestos-containing building materials and lead-based paint. Hazardous materials could be released into the environment if disturbed or improperly handled, such as during project demolition activities.

Prior to demolition, CCR Title 8, Sections 1529 and 5208 require that a state-certified risk assessor conduct a risk assessment and/or paint inspection of all structures constructed prior to 1978 for the presence of asbestos. Regulations and guidelines also pertain to abatement of and protection from exposure to lead-based paint, including Construction Safety Order 1532.1 from CCR Title 8. In California, lead-based paint abatement must be performed and monitored by contractors with appropriate certification from the California Department of Public Health.

If any fuel and oil spills were to occur, they would be minor based on the quantity of such materials typically stored and/or used on a demolition site. In addition, the proposed project would be required to develop and implement a SWPPP that includes best management practices to prevent or reduce the movement of sediment, chemicals, hazardous debris, and other pollutants. BMPs identified in the stormwater pollution prevention plan would prevent impacts on surface water or groundwater associated with the use and handling of hazardous materials during demolition activities from leaving the construction site and creating a significant hazard to the public or the environment.

Continued compliance with federal, state, and local regulations related to the transport, use, and disposal of hazardous materials would reduce this impact. However, older high intensity discharge (HID) ballast capacitors in fluorescent light fixtures may be sources of exposure to polychlorinated biphenyl (PCB) through improper handling or disposal. This impact would be significant. As such, mitigation measures MM HAZ-1a and MM HAZ-1b are required.
Implementation of mitigation measures MM HAZ-1a and MM HAZ-1b regulating the handling of PCBs uncovered at the project site would prevent release of hazardous materials within the project area, so as to not pose a safety hazard. With these measures and compliance with other applicable hazardous material regulations, this impact would be reduced to less than significant.

c) Citrus Heights Elementary School is located adjacent to the project site, on the southwest side. As stated above, the DOT regulates the transportation of hazardous materials through implementation of the Hazardous Materials Transportation Act. This act establishes requirements for container design and labeling, as well as for driver training. The regulations are intended to track and manage the safe transportation of hazardous materials and waste. All hazardous waste handlers would be trained professionals. After demolition, the project site would not be associated with hazardous emissions or the handling of hazardous or acutely hazardous materials, substances, or waste that could create a risk to local area schools. Additionally, implementation mitigation measures MM HAZ-1a and MM HAZ-1b would be required to minimize impacts from project demolition. As such, the project would have a less than significant impact.

d) Under Government Code Section 65962.5, both the California Department of Toxic Substances Control (DTSC) and the State Water Resources Control Board (SWRCB) are required to maintain lists of sites known to have hazardous substances present in the environment. Both agencies maintain up-to-date lists on their websites. According to a search of the GeoTracker database (SWRCB 2016), no active cleanup sites are located on the project site. As such, the project would have no impact.

The project site is not located within an airport land use plan or in the vicinity of a private airstrip. Therefore, the project would have no impact.

g) The City of Citrus Heights has begun the process of developing an Emergency Operations Plan; however, one has not been adopted. Demolition activities would generate worker vehicle trips, movement of heavy equipment, and materials import and export. However, these activities would be short term, lasting approximately one month, and would not require road closures that would impede emergency vehicles. Therefore, the proposed project would not impair implementation of, or physically interfere with, an adopted emergency response plan or emergency evacuation plan. This impact would be less than significant.

h) The project site is not located in a High Fire Hazard Severity Zone (Cal Fire 2007). Furthermore, the project site is located within an urbanized area. There would be no impact related to wildland fires.

Mitigation Measures

MM HAZ-1a

Prior to demolition, to prevent accidental release of polychlorinated biphenyls (PCB), the contractor shall remove all fluorescent light fixtures. If a “no PCB” sticker on the fluorescent fixture ballasts cannot be located, ballasts shall be removed and treated as containing PCB.

- **Timing/Implementation:** Prior to demolition work
- **Enforcement/Monitoring:** SJUSD Planning and Property Management Facilities Services Division
If hazardous materials are encountered during demolition or accidentally released as a result of demolition activities, the contractor shall implement the following procedures:

- Stop all work in the vicinity of any discovered contamination or release.
- Identify the scope and immediacy of the problem.
- Coordinate with the responsible agencies (e.g., California Department of Toxic Substances Control, Certified Unified Program Agency).
- Conduct the necessary investigation and remediation activities to resolve the situation before continuing construction work.

Timing/Implementation: During demolition work

Enforcement/Monitoring: SJUSD Planning and Property Management Facilities Services Division
4.9 HYDROLOGY AND WATER QUALITY

Would the project:

a)	Violate any water quality standards or waste discharge requirements?	⬜	⬜	⬝	⬜
b)	Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?	⬜	⬜	⬜	⬝
c)	Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?	⬜	⬜	⬝	⬜
d)	Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding on- or off-site?	⬜	⬜	⬝	⬜
e)	Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?	⬜	⬜	⬝	⬜
f)	Otherwise substantially degrade water quality?	⬜	⬜	⬝	⬜
g)	Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?	⬜	⬜	⬜	⬝
h)	Place within a 100-year flood hazard area structures that would impede or redirect flood flows?	⬜	⬜	⬜	⬙
i)	Expose people or structures to a significant risk of loss, injury, or death involving flooding, including flooding as a result of a failure of a levee or dam?	⬜	⬜	⬜	⬝
j)	Inundation by seiche, tsunami, or mudflow?	⬜	⬜	⬜	⬝

DISCUSSION OF IMPACTS

a) Project demolition could introduce sediment and other contaminants typically associated with demolition into stormwater runoff, potentially resulting in the degradation of downstream surface water and groundwater quality. Stormwater flowing over the project site during construction could carry various pollutants downstream such as sediment, nutrients, bacteria and viruses, oil and grease, heavy metals, organics, or hazardous waste (see subsection 4.8, Hazards and Hazardous Materials). These pollutants could originate from soil disturbances, demolition equipment, and building materials. Project demolition
activities would disturb soil on the project site, which could result in sedimentation that reaches the city’s storm drain system.

The SWPPP would consider the full range of erosion control best management practices, including any site-specific and seasonal conditions. Examples of typical construction BMPs include, but are not limited to, using temporary mulching, seeding, or other suitable stabilization measures to protect uncovered soils and installing sediment control devices such as gravel bags, inlet filters, fiber rolls, or silt fences to reduce or eliminate sediment and other pollutants from discharging to the drainage system or receiving waters. BMPs are recognized as effective methods to prevent or minimize the potential releases of pollutants into drainages, surface water, or groundwater through erosion control mechanisms. Compliance with existing regulations would minimize erosion during and after project demolition to a less than significant impact.

b) The proposed project would reduce the amount of impervious surface on the project site. The project site would be vacant, and impervious surfaces, such as asphalt and buildings, would be removed during demolition. Therefore, the project would increase recharge capabilities on the project site and there would be no impact.

c, d) The project site currently drains via formal channels and storm drains to the city’s storm drain system. As stated above, the project would increase permeability on the project site, which would reduce runoff. This would reduce the risk of erosion and flooding in the project vicinity. Therefore, the project’s impact would be less than significant.

e, f) See Item a) and Item c, d).

g-i) According to the Federal Emergency Management Agency’s 100-year Flood Zone for Sacramento County, the project site is not located in a flood zone (FEMA 2012). In addition, the project does not propose the construction of new buildings or residences. Therefore, the project would not expose people or structures to risks of flooding and would have no impact.

j) The project site is located inland, at an elevation of more than 165 feet above sea level, and is therefore not likely to be affected by flooding from a tsunami. Seiches are caused by the oscillation of medium to large enclosed bodies of water during an earthquake. There are no lakes nearby, so the site is not likely to be affected by seiches. Additionally, the project site is flat, and the surrounding land contains gentle slopes. As such, the site is not subject to mudflow. The project would have no impact related to tsunami, seiche, or mudflow.

Mitigation Measures

None required.
4.0 ENVIRONMENTAL CHECKLIST

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

4.10 LAND USE AND PLANNING

Would the project:

- a) Physically divide an established community?
- b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to, the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?
- c) Conflict with any applicable habitat conservation plan or natural community conservation plan?

DISCUSSION OF IMPACTS

- a) The site does not currently provide any vehicular or pedestrian connections between adjacent land uses, and the project does not propose any major linear features such as a major roadway. Therefore, the proposed project would not physically divide the surrounding community and there would be **no impact**.

- b, c) As described in Section 2.0, the project site has a land use designation in the Citrus Heights General Plan of Public and is zoned by the City of Citrus Heights RD-2 (Very Low Density Residential). The proposed project would be consistent with the land use designation and zoning. The proposed project would not change the site’s land use designation or conflict with any existing land use plans. The project would not conflict with a habitat conservation plan or a natural community conservation plan protecting biological resources, as such a plan has not been approved for the area. There would be **no impact**.

Mitigation Measures

None required.
4.0 ENVIRONMENTAL CHECKLIST

4.11 MINERAL RESOURCES. Would the project:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

DISCUSSION OF IMPACTS

a, b) The project would not result in the loss of an available known mineral resource that would be of value to the region. There are no locally important mineral resources in Citrus Heights or adjacent to the project site (Citrus Heights 2011). Therefore, the project would have no impact.

Mitigation Measures

None required.
4.0 ENVIRONMENTAL CHECKLIST

<table>
<thead>
<tr>
<th>4.12 NOISE. Would the project result in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance or of applicable standards of other agencies?</td>
</tr>
<tr>
<td>b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?</td>
</tr>
<tr>
<td>c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
</tr>
<tr>
<td>d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan area or, where such a plan has not been adopted, within 2 miles of a public airport or a public use airport, exposure of people residing or working in the project area to excessive noise levels?</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, exposure of people residing or working in the project area to excessive noise levels?</td>
</tr>
</tbody>
</table>

DISCUSSION OF IMPACTS

a, b) Noise is generally defined as sound that is loud, disagreeable, or unexpected. The selection of a noise descriptor for a specific source is dependent on the spatial and temporal distribution, duration, and fluctuation of the noise. The noise descriptors most often used when dealing with traffic, community, and environmental noise include an overall frequency-weighted sound level in decibels that approximates the frequency response of the human ear (A-weighted decibels or dBA).

Noise can be generated by a number of sources, including mobile sources, such as automobiles, trucks, and airplanes, and stationary sources, such as construction sites, machinery, and industrial operations. The rate depends on the ground surface and the number or type of objects between the noise source and the receiver. Mobile transportation sources, such as highways, and hard and flat surfaces, such as concrete or asphalt, have an attenuation rate of 3.0 dBA per doubling of distance. Soft surfaces, such as uneven or vegetated terrain, have an attenuation rate of about 4.5 dBA per doubling of distance from the source. Noise generated by stationary sources typically attenuates at a rate of approximately 6.0 to 7.5 dBA per doubling of distance from the source (EPA 1971).

Demolition Noise

Project demolition would temporarily increase noise levels in the project area. During demolition, the project may also generate groundborne vibration as a result of heavy
environmental operations. The project site is located near sensitive user groups such as Citrus Heights Elementary School and surrounding residential uses. Project demolition would take place during the school year, commencing in January 2017.

As shown in Table NOI-1, typical demolition activities generate noise levels between 82 dBA and 85 dBA at a distance of 50 feet. These noise levels would diminish rapidly or attenuate with distance from the project site, at an attenuation rate of approximately 6 dBA per doubling of distance. For example, a noise level of 85 dBA measured at 50 feet from the noise source to the receptor would reduce to 79 dBA at 100 feet from the source to the receptor, and reduce by another 6 dBA, to 73 dBA, at 200 feet from the source to the receptor. However, given the proximity to Citrus Heights Elementary School and residential uses, this could be a significant impact.

Table NOI-1

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Noise Level at 50 Feet with Mufflers (dBA)</th>
<th>Noise Level at 100 Feet with Mufflers (dBA)</th>
<th>Noise Level at 200 Feet with Mufflers (dBA)</th>
<th>Noise Level at 400 Feet with Mufflers (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Clearing</td>
<td>82</td>
<td>76</td>
<td>70</td>
<td>64</td>
</tr>
<tr>
<td>Demolition</td>
<td>85</td>
<td>79</td>
<td>73</td>
<td>67</td>
</tr>
</tbody>
</table>

Sources: EPA 1971; FTA 2006

The nearest school building to demolition activities would be approximately 400 feet. Given the attenuation at this distance and that demolition activities are scheduled to commencing in January 2017, when windows at the school would be closed, this would be a less than significant impact. The nearest residence is approximately 100 feet from demolition activities. While the noise level in the area would otherwise exceed noise levels for residential uses, City of Citrus Heights Municipal Code Section 34-88 exempts noise generated by construction and demolition, provided the activities occur within specified work hours determined by the City. Mitigation measure **MM NOI-1** would reduce the impact to less than significant by requiring demolition activities to be limited to the hourly restrictions in the provided by the City of Citrus Heights. Implementation of **MM NOI-1** would reduce the potential impact on residences to **less than significant**.

c) See Item a). The project demolition is anticipated to occur over approximately 20 days. After this time, the project would not generate any operational noise, as the site would be vacant. The project would have **no impact** on permanent ambient noise levels.

d) As stated above, the nearest noise-sensitive land uses are Citrus Heights Elementary School and residences. Project demolition would result in temporary noise impacts on adjacent land uses, which could be potentially significant. However, the demolition period is short and implementation of **MM NOI-1** would reduce this impact to **less than significant**.

e, f) The project site is not located within an airport land use plan area or near a private airstrip. The nearest airstrip is McClellan Airfield, located 8 miles southwest of the project site. The project would have **no impact**.
Mitigation Measures

MM NOI-1 During the period of demolition, the contractor shall abide by work hours and hourly restrictions as provided by the City of Citrus Heights.

Timing/Implementation: During demolition work

Enforcement/Monitoring: SJ USD Planning and Property Management Facilities Services Division
4.13 POPULATION AND HOUSING. Would the project:

| a) Induce substantial population growth in an area, either directly (e.g., by proposing new homes and businesses) or indirectly (e.g., through extension of roads or other infrastructure)? |
|---|---|---|---|---|
| Potentially Significant Impact | Less Than Significant Impact With Mitigation Incorporated | Less Than Significant Impact | No Impact |
| | | | ☑ |

| b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere? |
|---|---|---|---|---|
| Potentially Significant Impact | Less Than Significant Impact With Mitigation Incorporated | Less Than Significant Impact | No Impact |
| | | | ☑ |

| c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere? |
|---|---|---|---|---|
| Potentially Significant Impact | Less Than Significant Impact With Mitigation Incorporated | Less Than Significant Impact | No Impact |
| | | | ☑ |

DISCUSSION OF IMPACTS

a–c) The project entails the demolition of existing structures, which are currently vacant, so project implementation would not displace any housing or people. The project would not result in any long-term employment; employment opportunities would be limited to construction workers during project demolition. Therefore, the project would not directly or indirectly induce population growth. The project would have no impact.

Mitigation Measures

None required.
4.0 ENVIRONMENTAL CHECKLIST

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.14 PUBLIC SERVICES

Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the following public services:

<table>
<thead>
<tr>
<th>a) Fire protection?</th>
<th>□</th>
<th>□</th>
<th>□</th>
<th>❌</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Police protection?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>❌</td>
</tr>
<tr>
<td>c) Schools?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>❌</td>
</tr>
<tr>
<td>d) Parks?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>❌</td>
</tr>
<tr>
<td>e) Other public facilities?</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>❌</td>
</tr>
</tbody>
</table>

DISCUSSION OF IMPACTS

a–e) New structures are not proposed for the project site, so project implementation would not increase the population of Citrus Heights or result in new demand for public services such as fire protection, police protection, parks, or other public facilities. Students are now attending the updated Sylvan Middle School campus located at 7085 Auburn Boulevard. The proposed project would not increase the number of schoolchildren in the city or require the construction of a new campus to accommodate the middle school students from this campus. Because the project would not generate demand for public facilities, there would be no physical environmental changes due to construction of new facilities. Therefore, the project would have **no impact**

Mitigation Measures

None required.
4.15 RECREATION.

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? □ □ □ ❌

b) Does the project include recreational facilities, or require the construction or expansion of recreational facilities, which might have an adverse physical effect on the environment? □ □ □ ❌

DISCUSSION OF IMPACTS

a, b) Citrus Heights has 25 parks; park facilities include children’s play equipment, picnic tables, baseball diamonds, and tennis/basketball courts (Sunrise Recreation and Park District 2016). The project would not increase population in the area and therefore would not increase demand for neighborhood or regional parks or recreational facilities. Therefore, no new or expanded facilities would be required and the project would have no impact.

Mitigation Measures

None required.
4.0 ENVIRONMENTAL CHECKLIST

4.16 TRANSPORTATION/TRAFFIC. Would the project:

<table>
<thead>
<tr>
<th>Impact</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume-to-capacity ratio on roads, or congestion at intersections)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Result in inadequate emergency access?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>f) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

DISCUSSION OF IMPACTS

a, b) During project demolition, construction workers would incrementally increase the number of vehicle trips and the volume-to-capacity ratio on roads. However, it is anticipated demolition activities would be limited to approximately 20 workdays, and there would be no operational traffic generated by the project. It is estimated that the project would generate 15 worker trips per day, and a total of approximately 300 haul trips to the landfill to dispose demolition material. While it is not certain in which appropriate construction waste facility would be used, L & D Landfill and Material Recovery Facility is located approximately 17 miles southwest of the project site (Citrus Heights 2016).

The project would not increase the population of Citrus Heights and would not result in an increase in vehicle trips to and from the project site. Because the demolition period is short in duration and the project would not generate operational traffic, the project would not have a significant impact on traffic load, and volume-to-capacity on roads would not exceed the City's level of service standard. Therefore, the project would have a less than significant impact.

c) The project would not change air traffic patterns and would therefore have no impact.

d) The project would maintain the same ingress and egress points with appropriate signage. The project would not result in any new design features or incompatible uses. The project would not require the permanent alteration of any roadways or generate vehicle uses incompatible with the existing roadways. The project would have no impact on road hazards.
e) No streets or intersections would be closed to accommodate demolition activities, and emergency access would not be impacted by the proposed project. Access to and from the project site would be maintained throughout demolition. The project would not modify the site’s existing circulation system. Therefore, the project would have no impact.

f) The proposed project would not conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities. Auburn Boulevard has three bus stops in proximity to the project site, for Sacramento Regional Transit bus routes 93, 95, and 103. Transit access would be maintained and the project would not modify the existing circulation system. Therefore, the project would not conflict with adopted policies, plans, or programs supporting alternative transportation. This impact would be less than significant.

Mitigation Measures

None required.
4.17 UTILITIES AND SERVICE SYSTEMS. Would the project:

<table>
<thead>
<tr>
<th>a)</th>
<th>b)</th>
<th>c)</th>
<th>d)</th>
<th>e)</th>
<th>f)</th>
<th>g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?</td>
<td>Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>Require or result in the construction of new stormwater drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?</td>
<td>Result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project’s projected demand, in addition to the provider’s existing commitments?</td>
<td>Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?</td>
<td>Comply with federal, state, and local statutes and regulations related to solid waste?</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

DISCUSSION OF IMPACTS

a–g) The project would not increase demand for utility services including wastewater treatment, water supply, new stormwater facilities, or landfills. As such, the project would have **no impact**

Mitigation Measures

None required.
4.18 MANDATORY FINDINGS OF SIGNIFICANCE.

<table>
<thead>
<tr>
<th>Potential</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant Impact</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of rare or endangered plants or animals, or eliminate important examples of the major periods of California history or prehistory? □ □ □ □

b) Does the project have impacts that are individually limited, but cumulatively considerable? "Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects. □ □ □ □

c) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly? □ □ □ □

DISCUSSION OF IMPACTS

a) The project would demolish existing buildings on the project site. No new buildings would be constructed. The project would not degrade habitat or wetlands. Additionally, the project would have a less than significant impact on cultural resources, as no historic resources are located on the project site. As such, project impacts would be less than significant.

b) In general, individual GHG emissions do not have a large impact on climate change. However, once added with all other GHG emissions in the past and present, they combine to create a perceptible change to climate. Because of the extended amount of time that GHGs remain in the atmosphere, any amount of GHG emissions can be reasonably expected to contribute to future climate change impacts. The amount of CO₂ emissions from the proposed project, although measurable, would be minor and within SMAQMD thresholds. On a global scale, the proposed project would contribute a negligible amount to global cumulative effects to climate change due to its temporary nature and its urban location. Therefore, the proposed project's contribution to GHG emissions would not be cumulatively considerable, and the project would have a less than significant impact on cumulative conditions.

c) Based on the findings of this Initial Study, the project would not have a substantial impact on human beings. The impact would be less than significant.
This page intentionally left blank.
5.0 REFERENCES
5.0 REFERENCES

5.1 DOCUMENTS REFERENCED IN INITIAL STUDY AND/OR INCORPORATED BY REFERENCE

The following documents were used to support the preparation of this Initial Study. Compliance with federal, state, and local laws is assumed in all projects.

———. 2012. Aggregate Sustainability in California [map].

———. 2010. PM10 Implementation/Maintenance Plan and Re-Designation Request for Sacramento County.
REFERENCES

———. 2013. PM$_{2.5}$ Implementation/Maintenance Plan and Redesignation Request for Sacramento PM$_{2.5}$ Nonattainment Area.

APPENDICES
The mission of Sylvan Middle School is consistent with that of the San Juan Unified School District, which is to inspire each student to succeed and responsibly contribute to a radically evolving world by providing innovative, rigorous, student-focused instruction and programs in a safe, caring, and collaborative learning community.
Sylvan Middle School

Description: Year Built: 1938
Total Square Feet of Floor Space: 57,597
Acres: 13

Address: 7137 Auburn Blvd Citrus Heights, CA 95610

Generated on: 6/3/13

Building stages: - Facilities Assessment Report

Building trades: - A-SHELL
- B-INTERIOR
- C-SERVICES
- D-EQUIPMENT AND FURNISHINGS
- E-OTHER BUILDING CONSTRUCTION
- F-BUILDING SITE WORK

Stakeholder:

Drawings: - Sylvan (Facilities Assessment Report)
- Sylvan_2013 (Facilities Assessment Report)
- Sylvan_Area INT (Facilities Assessment Report)
A-SHELL

Observation #8

WALL FINISHES - Peeling exterior paint and rust on metal fascias.

Recommend replacement of roof fascia. Repair and repainting of all buildings.

Observation #9

OPENINGS - Single pane glazing in wood or metal windows with cracked caulking. Typical of all permanent buildings.

Recommend replacement of all window systems with new double pane window systems.

Observation #11

OPENINGS - This building contains louver glass windows. Presents maintenance and security issues.

Recommend replacing these with double pane window system.
Observation #27

STRUCTURE - Wood posts at canopy have dry rot.

Recommend placement of canopy posts.
B-INTERIOR

Observation #4

FLOOR FINISHES - Asbestos floor tiles throughout Admin. building.

Recommend removal and replacement.

Observation #12

CEILING FINISHES – Approx. 5% of ceiling tiles in classrooms are damaged and/or stained.

Recommend replacing tiles as needed.

FLOOR FINISHES - Asbestos worn VCT in all classrooms other than science labs.

Recommend replacement of all classroom flooring.

Observation #14

FLOOR FINISHES - Old tile on floor from demolished shower facilities. Tripping and maintenance issue.

Recommend removal of old tile and replacement of floor.

Observation #21

CEILING FINISHES - Water damaged ceiling tiles in this room.

Recommend checking roofing and replacing ceiling.
Observation #29

CEILING FINISHES - Stained and damaged ceiling tiles.

Recommend replacement of acoustic ceiling in this building.
C-SERVICES

Observation #5

DOMESTIC PLUMBING - Cracked water supply and drainage piping typical throughout campus. Poor drainage and flooding throughout campus. Rust in water supply.

Recommend complete overhaul and replacement of plumbing systems.

Observation #22

LINE VOLTAGE - Poor lighting quality in this wing.

Recommend new efficient, brighter light fixtures.

Observation #28

LOW VOLTAGE - No security cameras, poor campus-wide Internet.

Recommend IT and security upgrades for campus.

Observation #30

LINE VOLTAGE - Poor lighting fixtures, dim lighting.

Recommend replacement of lighting in this building.
D-EQUIPMENT AND FURNISHINGS

Observation #13
CASEWORK - Old and worn casework in all classrooms other than science labs.
Recommend replacement of casework and countertops.

Observation #15
LOCKERS - Worn and slightly damaged lockers. Both boys and girls locker rooms.
Recommend replacement of lockers.
E-OTHER BUILDING CONSTRUCTION

Observation #2

ADA - No accessible access to school due to excessively damaged concrete and asphalt and no accessible ramps. Stairs at entry are buckled and missing handrails.

Recommend replacement and revising of entire entry to school.

Observation #3

ADA - All staff restrooms are too small to meet code.

Recommend replacement and redesign of staff restrooms.

Observation #6

ADA - Ramps to classrooms exceed code minimum slopes and have deficient handrails. Typical of all campus ramps.

Recommend all new accessible ramps on campus. Approx. 15 new ramps will be required.
Observation #10
ADA - Drinking fountains are not to code.
Recommend replacing all campus drinking fountains. Approx. 10.

Observation #16
LIFE SAFETY - Abandoned restroom building.
Recommend demolition or replacement of building.

Observation #17
LIFE SAFETY - Area of severely buckled concrete.
Recommend removal of concrete and re grading. Typical of entire campus.

Observation #18
LIFE SAFETY - Condemned portable classroom.
Recommend removal of portable classroom to prevent safety hazards.

Observation #19
LIFE SAFETY - Mold and rodent issues at 4 existing portables.
Recommend replacement of portables.
Observation #20

ADA - Clearance issues in library meeting rooms.

Recommend additional storage for library to free up space in meeting rooms.

Observation #26

ADA - Door hardware in this building and throughout campus does not meet current ADA codes.

Recommend new door hardware throughout campus.
F-BUILDING SITE WORK

Observation #7

HARDSCAPE - All campus concrete and asphalt at courtyard and outdoor areas on site is severely buckled and damaged.

Recommend total redesign and replacement of all campus concrete and asphalt areas.

Observation #31

SITE DEVELOPMENT - Rusted chain link fencing at trash area.

Recommend new trash enclosure large enough to accommodate load and with secure gates.
C-SERVICES

Observation #24

LINE VOLTAGE - Poor site and parking lot lighting.

Recommend new site lighting and parking lot lighting.
F-BUILDING SITE WORK

Observation #1

HARDSCAPE - Asphalt and concrete at parking, driveway and drop off areas is severely destroyed and cracked. Concrete steps and curbs are buckled and cracked. Typical of entire campus.

Recommend redesign and replacements of all concrete and asphalt at drop off and parking zones.

Observation #23

HARDSCAPE - South parking lot is severely buckled and mostly a dirt lot.

Recommend new parking lot.

Observation #25

SITE DEVELOPMENT - Poor chain link security fencing.

 Recommend complete new steel perimeter fencing and gates.
APPENDIX B:
AIR QUALITY DATA
Sylvan Middle School Demolition Project
Sacramento County, Summer

1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior High School</td>
<td>57.60</td>
<td>1000sqft</td>
<td>13.00</td>
<td>57,597.00</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

<table>
<thead>
<tr>
<th>Urbanization</th>
<th>Wind Speed (m/s)</th>
<th>Precipitation Freq (Days)</th>
<th>Climate Zone</th>
<th>Operational Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>3.5</td>
<td>58</td>
<td>6</td>
<td>2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utility Company</th>
<th>CO2 Intensity (lb/MWhr)</th>
<th>CH4 Intensity (lb/MWhr)</th>
<th>N2O Intensity (lb/MWhr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacramento Municipal Utility District</td>
<td>590.31</td>
<td>0.029</td>
<td>0.006</td>
</tr>
</tbody>
</table>

1.3 User Entered Comments & Non-Default Data

Project Characteristics -
Land Use - Project site = 13 acres
Construction Phase -
Demolition -
Vehicle Trips - No operational phase
Energy Use - No operational phase

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.32</td>
<td>13.00</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>OperationalYear</td>
<td>2014</td>
<td>2017</td>
</tr>
</tbody>
</table>
2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>4.457</td>
<td>46.375</td>
<td>39.365</td>
<td>0.0535</td>
<td>4.2045</td>
<td>2.1810</td>
<td>6.3855</td>
<td>0.6853</td>
<td>2.0310</td>
<td>2.7163</td>
<td>0.0000</td>
<td>5,352.966</td>
<td>5,352.966</td>
<td>1.126</td>
<td>0.0000</td>
<td>5,376.499</td>
</tr>
<tr>
<td>Total</td>
<td>4.457</td>
<td>46.375</td>
<td>39.365</td>
<td>0.0535</td>
<td>4.2045</td>
<td>2.1810</td>
<td>6.3855</td>
<td>0.6853</td>
<td>2.0310</td>
<td>2.7163</td>
<td>0.0000</td>
<td>5,352.966</td>
<td>5,352.966</td>
<td>1.126</td>
<td>0.0000</td>
<td>5,376.499</td>
</tr>
</tbody>
</table>

Mitigated Construction

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>4.457</td>
<td>46.375</td>
<td>39.365</td>
<td>0.0535</td>
<td>4.2045</td>
<td>2.1810</td>
<td>6.3855</td>
<td>0.6853</td>
<td>2.0310</td>
<td>2.7163</td>
<td>0.0000</td>
<td>5,352.966</td>
<td>5,352.966</td>
<td>1.126</td>
<td>0.0000</td>
<td>5,376.499</td>
</tr>
<tr>
<td>Total</td>
<td>4.457</td>
<td>46.375</td>
<td>39.365</td>
<td>0.0535</td>
<td>4.2045</td>
<td>2.1810</td>
<td>6.3855</td>
<td>0.6853</td>
<td>2.0310</td>
<td>2.7163</td>
<td>0.0000</td>
<td>5,352.966</td>
<td>5,352.966</td>
<td>1.126</td>
<td>0.0000</td>
<td>5,376.499</td>
</tr>
</tbody>
</table>

CalEEMod Version: CalEEMod.2013.2.2
Date: 9/13/2016 9:52 AM
<table>
<thead>
<tr>
<th>Percent Reduction</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>
2.2 Overall Operational

Unmitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>1.4526</td>
<td>6.0000e-005</td>
<td>5.9900e-003</td>
<td>0.0000</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>0.0126</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>0.0126</td>
<td>4.0000e-005</td>
<td>0.0133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0273</td>
<td>0.2480</td>
<td>0.2083</td>
<td>1.4900e-003</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>297.5922</td>
<td>297.5922</td>
<td>5.7000e-003</td>
<td>5.4600e-003</td>
<td>299.4033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>2.9268</td>
<td>4.9870</td>
<td>26.8762</td>
<td>0.0558</td>
<td>3.6991</td>
<td>0.0703</td>
<td>3.7694</td>
<td>0.9882</td>
<td>0.0647</td>
<td>1.0528</td>
<td>4.665.322</td>
<td>0</td>
<td>4.665.322</td>
<td>0</td>
<td>0.1853</td>
<td>4.669.213</td>
</tr>
<tr>
<td>Total</td>
<td>4.4066</td>
<td>5.2350</td>
<td>27.0905</td>
<td>0.0573</td>
<td>3.6991</td>
<td>0.0891</td>
<td>3.7883</td>
<td>0.9882</td>
<td>0.0835</td>
<td>1.0717</td>
<td>4,962.926</td>
<td>9</td>
<td>4,962.926</td>
<td>9</td>
<td>0.1910</td>
<td>5.4600e-003</td>
</tr>
</tbody>
</table>

Mitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>1.4526</td>
<td>6.0000e-005</td>
<td>5.9900e-003</td>
<td>0.0000</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>0.0126</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>0.0126</td>
<td>4.0000e-005</td>
<td>0.0133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0273</td>
<td>0.2480</td>
<td>0.2083</td>
<td>1.4900e-003</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>297.5922</td>
<td>297.5922</td>
<td>5.7000e-003</td>
<td>5.4600e-003</td>
<td>299.4033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>2.9268</td>
<td>4.9870</td>
<td>26.8762</td>
<td>0.0558</td>
<td>3.6991</td>
<td>0.0703</td>
<td>3.7694</td>
<td>0.9882</td>
<td>0.0647</td>
<td>1.0528</td>
<td>4.665.322</td>
<td>0</td>
<td>4.665.322</td>
<td>0</td>
<td>0.1853</td>
<td>4.669.213</td>
</tr>
<tr>
<td>Total</td>
<td>4.4066</td>
<td>5.2350</td>
<td>27.0905</td>
<td>0.0573</td>
<td>3.6991</td>
<td>0.0891</td>
<td>3.7883</td>
<td>0.9882</td>
<td>0.0835</td>
<td>1.0717</td>
<td>4,962.926</td>
<td>9</td>
<td>4,962.926</td>
<td>9</td>
<td>0.1910</td>
<td>5.4600e-003</td>
</tr>
</tbody>
</table>
3.0 Construction Detail

Construction Phase

<table>
<thead>
<tr>
<th>Phase Number</th>
<th>Phase Name</th>
<th>Start Date</th>
<th>End Date</th>
<th>Num Days</th>
<th>Phase Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Demolition</td>
<td>1/1/2017</td>
<td>1/27/2017</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; **Residential Outdoor:** 0; **Non-Residential Indoor:** 0; **Non-Residential Outdoor:** 0 (Architectural Coating – sqft)

OffRoad Equipment

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Offroad Equipment Type</th>
<th>Amount</th>
<th>Usage Hours</th>
<th>Horse Power</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>Concrete/Industrial Saws</td>
<td>1</td>
<td>8.00</td>
<td>81</td>
<td>0.73</td>
</tr>
<tr>
<td>Demolition</td>
<td>Excavators</td>
<td>3</td>
<td>8.00</td>
<td>162</td>
<td>0.38</td>
</tr>
<tr>
<td>Demolition</td>
<td>Rubber Tired Dozers</td>
<td>2</td>
<td>8.00</td>
<td>255</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Trips and VMT

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Offroad Equipment Count</th>
<th>Worker Trip Number</th>
<th>Vendor Trip Number</th>
<th>Hauling Trip Number</th>
<th>Worker Trip Length</th>
<th>Vendor Trip Length</th>
<th>Hauling Trip Length</th>
<th>Worker Vehicle Class</th>
<th>Vendor Vehicle Class</th>
<th>Hauling Vehicle Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>6</td>
<td>15.00</td>
<td>0.00</td>
<td>337.00</td>
<td>10.00</td>
<td>6.50</td>
<td>20.00+LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
<td>HHDT</td>
</tr>
</tbody>
</table>

3.1 Mitigation Measures Construction
3.2 Demolition - 2017

Unmitigated Construction On-Site

| Category | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio-CO2 | NBio-CO2 | Total CO2 | CH4 | N2O | CO2e |
|---------------------|-----|-----|-----|-----|---------------|--------------|------------|---------------|--------------|------------|----------|---------|-----------|-----------|----|-----|-----|
| Fugitive Dust | | | | | 3.7983 | 0.0000 | 3.7983 | 0.5751 | 0.0000 | 0.5751 | 0.0000 | 0.0000 | 0.0000 | | | |
| Off-Road | 4.0482 | 42.6971 | 33.8934 | 0.0399 | 2.1252 | 2.1252 | 1.9797 | 1.9797 | 4.036.467 | 4.036.467 | 1.1073 | 4,059.721 |
| Total | 4.0482 | 42.6971 | 33.8934 | 0.0399 | 3.7983 | 2.1252 | 5.9235 | 0.5751 | 1.9797 | 2.5548 | 4,036.467 | 4,036.467 | 1.1073 | 4,059.721 |

Unmitigated Construction Off-Site

Category	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	CO2e	
Hauling	0.3538	3.6305	4.8239	0.0122	0.2921	0.0550	0.3471	0.0799	0.0506	0.1305	1,201.314	3	8,000.000	4			
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
Worker	0.0536	0.0483	0.6480	1.4600e-003	0.1141	8.1000e-004	0.1149	0.0303	7.5000e-004	0.0310	115.1849	115.1849	5,280.000	3			
Total	0.4074	3.6788	5.4719	0.0136	0.4062	0.0558	0.4621	0.1102	0.0513	0.1615	1,316.499	2	0.0133	1,316.778			
3.2 Demolition - 2017

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.7983</td>
<td>0.0000</td>
<td>3.7983</td>
<td>0.5751</td>
<td>0.0000</td>
<td>0.5751</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>4.0482</td>
<td>42.6971</td>
<td>33.8934</td>
<td>0.0399</td>
<td>2.1252</td>
<td>2.1252</td>
<td>1.9797</td>
<td>0.0000</td>
<td>4.036.467</td>
<td>4.036.467</td>
<td>1.1073</td>
<td>4.059.721</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.0482</td>
<td>42.6971</td>
<td>33.8934</td>
<td>0.0399</td>
<td>3.7983</td>
<td>2.1252</td>
<td>5.9235</td>
<td>0.5751</td>
<td>1.9797</td>
<td>2.5548</td>
<td>0.0000</td>
<td>4.036.467</td>
<td>1.1073</td>
<td>4.059.721</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.3538</td>
<td>3.6305</td>
<td>4.8239</td>
<td>0.0122</td>
<td>0.2921</td>
<td>0.0550</td>
<td>0.3471</td>
<td>0.0799</td>
<td>0.0506</td>
<td>0.1305</td>
<td>1.201.314</td>
<td>1.201.314</td>
<td>8.0000e-003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>0.0536</td>
<td>0.0483</td>
<td>0.6480</td>
<td>1.4600e-003</td>
<td>0.1141</td>
<td>8.1000e-004</td>
<td>0.1149</td>
<td>0.0303</td>
<td>7.5000e-004</td>
<td>0.0310</td>
<td>115.1849</td>
<td>115.1849</td>
<td>5.2800e-003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.4074</td>
<td>3.6788</td>
<td>5.4719</td>
<td>0.0136</td>
<td>0.4062</td>
<td>0.0558</td>
<td>0.4621</td>
<td>0.1102</td>
<td>0.0513</td>
<td>0.1615</td>
<td>1.316.499</td>
<td>1.316.499</td>
<td>0.0133</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.0 Operational Detail - Mobile
4.1 Mitigation Measures Mobile

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>2.9268</td>
<td>4.9870</td>
<td>26.8762</td>
<td>0.0558</td>
<td>3.6991</td>
<td>0.0703</td>
<td>3.7694</td>
<td>0.9882</td>
<td>0.0647</td>
<td>1.0528</td>
<td>4,665.322</td>
<td>4,665.322</td>
<td>0.1853</td>
<td>4,669.213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unmitigated</td>
<td>2.9268</td>
<td>4.9870</td>
<td>26.8762</td>
<td>0.0558</td>
<td>3.6991</td>
<td>0.0703</td>
<td>3.7694</td>
<td>0.9882</td>
<td>0.0647</td>
<td>1.0528</td>
<td>4,665.322</td>
<td>4,665.322</td>
<td>0.1853</td>
<td>4,669.213</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Trip Summary Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Average Daily Trip Rate</th>
<th>Unmitigated</th>
<th>Mitigated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekday</td>
<td>Saturday</td>
<td>Sunday</td>
</tr>
<tr>
<td>Junior High School</td>
<td>793.69</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>793.69</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

4.3 Trip Type Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Miles</th>
<th>Trip %</th>
<th>Trip Purpose %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-W or C-W</td>
<td>H-S or C-C</td>
<td>H-O or C-NW</td>
</tr>
<tr>
<td>Junior High School</td>
<td>10.00</td>
<td>5.00</td>
<td>6.50</td>
</tr>
</tbody>
</table>

5.0 Energy Detail

5.4 Fleet Mix

Historical Energy Use: N
5.1 Mitigation Measures Energy

NaturalGas

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Mitigated</td>
<td>0.0273</td>
<td>0.2480</td>
<td>0.2083</td>
<td>1.4900e-003</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>297.5922</td>
<td>5.7000e-003</td>
<td>5.4600e-003</td>
<td>299.4033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas Unmitigated</td>
<td>0.0273</td>
<td>0.2480</td>
<td>0.2083</td>
<td>1.4900e-003</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>297.5922</td>
<td>5.7000e-003</td>
<td>5.4600e-003</td>
<td>299.4033</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2 Energy by Land Use - NaturalGas

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>kBTU/yr</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior High School</td>
<td>2529.53</td>
<td>0.0273</td>
<td>0.2480</td>
<td>0.2083</td>
<td>1.4900e-003</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>297.5922</td>
<td>5.7000e-003</td>
<td>5.4600e-003</td>
<td>299.4033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.0273</td>
<td>0.2480</td>
<td>0.2083</td>
<td>1.4900e-003</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>0.0189</td>
<td>297.5922</td>
<td>5.7000e-003</td>
<td>5.4600e-003</td>
<td>299.4033</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.2 Energy by Land Use - NaturalGas

Mitigated

| Land Use | NaturalGas Use | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|--------------|----------------|-------|-------|-------|-------|----------------|---------------|------------|----------------|----------------|------------|-----------|----------|--------|-------|-------|
| Junior High School | 2.52953 | 0.0273 | 0.2480 | 0.2083 | 1.4900e-003 | 0.0189 | 0.0189 | 0.0189 | 0.0189 | 0.0189 | 0.0189 | 297.5922 | 297.5922 | 5.7000e-003 | 5.4600e-003 | 299.4033 |
| Total | 0.0273 | 0.2480 | 0.2083 | 1.4900e-003 | 0.0189 | 0.0189 | 0.0189 | 0.0189 | 0.0189 | 0.0189 | 0.0189 | 297.5922 | 297.5922 | 5.7000e-003 | 5.4600e-003 | 299.4033 |

6.0 Area Detail

6.1 Mitigation Measures Area
6.2 Area by SubCategory

Unmitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.2194</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>1.2326</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>5.8000e-004</td>
<td>6.0000e-005</td>
<td>5.9900e-003</td>
<td>0.0000</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>0.0126</td>
<td>0.0126</td>
<td>4.0000e-005</td>
<td>0.0133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.4526</td>
<td>6.0000e-005</td>
<td>5.9900e-003</td>
<td>0.0000</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>0.0126</td>
<td>0.0126</td>
<td>4.0000e-005</td>
<td>0.0133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.2194</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>1.2326</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>5.8000e-004</td>
<td>6.0000e-005</td>
<td>5.9900e-003</td>
<td>0.0000</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>0.0126</td>
<td>0.0126</td>
<td>4.0000e-005</td>
<td>0.0133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.4526</td>
<td>6.0000e-005</td>
<td>5.9900e-003</td>
<td>0.0000</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>2.0000e-005</td>
<td>0.0126</td>
<td>0.0126</td>
<td>4.0000e-005</td>
<td>0.0133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.0 Water Detail
7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
<th>Hours/Day</th>
<th>Days/Year</th>
<th>Horse Power</th>
<th>Load Factor</th>
<th>Fuel Type</th>
</tr>
</thead>
</table>

10.0 Vegetation
APPENDIX C:
CULTURAL REPORT
September 2, 2016

David Burke, Director of Planning and Property Management
SAN JUAN UNIFIED SCHOOL DISTRICT
5320 Hemlock Street
Sacramento, CA 95841

RE: CULTURAL RESOURCES IDENTIFICATION AND RECOMMENDATIONS LETTER REPORT FOR THE SYLVAN MIDDLE SCHOOL DEMOLITION PROJECT, CITRUS HEIGHTS, CALIFORNIA

Dear Mr. Burke:

In support of the Sylvan Middle School Demolition Project (project) in Citrus Heights, Michael Baker International conducted a cultural resources survey to identify cultural resources and potential project impacts to historical resources pursuant to the California Environmental Quality Act (CEQA).

PROJECT DESCRIPTION

The project site is located at 7085 Auburn Boulevard, in the city of Citrus Heights, California. The Sylvan Middle School is located north of the Old Auburn Road and Auburn Boulevard intersection. The school is approximately 13 acres, with a total of 57,597 square feet of floor space. The campus includes 30 classrooms, a library, music room, a kitchen building, an office building, staff building, and restroom. There are also five portable units on the southern end of the campus. Basketball courts are located on the northern portions of the campus, and are used for a variety of physical education activities. Mature trees are located on-site fronting the library building and classrooms 1, 2 and 3.

Sylvan Middle School underwent a facilities assessment report in June 2013 to assess the facility’s state and need for updates. Per the assessment, Sylvan Middle School was graded as D-. Due to the campus’s poor condition, the estimated cost for upgrading the physical conditions at the site would be approximately $18,465,260 or a 75.4% replacement cost index. Per the district’s facilities master plan, sites above a 60% replacement index are considered better suited to be replaced or rebuilt. The replacement cost index weighs the cost of new construction of the same building’s square footage as configured in the same location.

Measure S was passed in November 1998 and Measure J was passed in November 2002. The projects resulting from Measures J and S were primarily of a repair and renovation nature with some new construction, such as multi-purpose buildings, classrooms, and gymnasiums. The district is currently in the final phases of completing projects under Measure J. Measure N was passed in November 2012 and is intended to continue to provide repairs and upgrades to district facilities. The demolition of Sylvan Middle School is funded by these bond measures.

Project demolition would take place over approximately one month. The District, per Government Code Section 53090-53097.5, does not require grading or building permits from the City of Citrus Heights. Construction vehicles would access the site via Auburn Boulevard. Roads would not be closed during
construction, and all road access would be maintained during construction. Signage would be used during construction to warn motorists approaching Auburn Boulevard of construction. The project would entail a total of 308 total demolition related truck trips, which would be round trips to and from the landfill. Approximately 15 round trips would be necessary to accommodate demolition workers.

Construction equipment would include an excavator, backhoe, bobcat, forklift, compactor, scraper, front loader, jackhammer, pile driver, and electric lift.

PROJECT OVERVIEW

The project would entail the demolition of Sylvan Middle School and all associated facilities. All buildings on the project site, including the portable units, would be demolished and disposed of at an appropriate construction waste facility. The project would require demolition work, removal of demolished materials, and removal of vegetation, followed by site grading. All building foundations would be removed as part of the proposed project and the site would be leveled post removal, so as to cover up any potential voids from foundation removal.

The existing school parking lots and basketball courts would be retained. The mature trees located near the library building would be retained, while the other trees on-site would be removed. Post-demolition, the project site would be graded and all building materials would be cleared.

CONSTRUCTION

Project demolition would take place over approximately one month. The district, per Government Code Section 53090-53097.5, does not require grading or building permits from the City of Citrus Heights. Construction vehicles would access the site via Auburn Boulevard. Roads would not be closed during construction, and all road access would be maintained during construction. Signage would be used during construction to warn motorists approaching Auburn Boulevard of construction. The project would entail a total of 308 total demolition-related truck trips, which would be round trips to and from the landfill. Approximately 15 round trips would be necessary to accommodate demolition workers.

Construction equipment would include an excavator, backhoe, bobcat, forklift, compactor, scraper, front loader, jackhammer, pile driver, and electric lift. Construction would take place during the school year.

REGULATORY SETTING

CALIFORNIA ENVIRONMENTAL QUALITY ACT

CEQA applies to all discretionary projects undertaken or subject to approval by the state’s public agencies (California Code of Regulations [CCR] Title 14(3) Section 15002(i)). CEQA states that it is the policy of the state of California to “take all action necessary to provide the people of this state with historic environmental qualities and preserve for future generations examples of the major periods of California history” (Public Resources Code [PRC] Section 21001(b), (c)). Under the provisions of CEQA, “a project with an effect that may cause a substantial adverse change in the significance of a historical resource is a project that may have a significant effect on the environment” (CCR Title 14(3) Section 15064.5(b)).
CEQA Guidelines Section 15064.5(a) defines a “historical resource” as a resource which meets one or more of the following criteria:

- Listed in, or eligible for listing in, the California Register of Historical Places (California Register);
- Listed in a local register of historical resources (as defined at PRC Section 5020.1(k));
- Identified as significant in a historical resource survey meeting the requirements of PRC Section 5024.1(g); or
- Determined to be a historical resource by a project’s lead agency (CCR Title 14(3) Section 15064.5(a)).

A historical resource consists of “any object, building, structure, site, area, place, record, or manuscript which a lead agency determines to be historically significant or significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California. Generally, a resource shall be considered by the lead agency to be ‘historically significant’ if the resource meets the criteria for listing in the California Register of Historical Resources” (CCR Title 14(3) Section 15064.5(a)(3)).

CEQA requires that historical resources and unique archaeological resources be taken into consideration during the CEQA planning process (CCR Title 14(3) Section 15064.5; PRC Section 21083.2). If feasible, adverse effects to the significance of historical resources must be avoided or the effects mitigated (CCR Title 14(3) Section 15064.5(b)(4)). The significance of a historical resource is impaired when a project demolishes or materially alters in an adverse manner those physical characteristics of a historical resource that convey its historical significance and that justify its eligibility for the California Register. If there is a substantial adverse change in the significance of a historical resource, the preparation of an environmental impact report may be required (CCR Title 14(3) Section 15065(a)).

If the cultural resource in question is an archaeological site, CEQA (CCR Title 14(3) Section 15064.5(c)(1)) requires that the lead agency first determine if the site is a historical resource as defined in CCR Title 14(3) Section 15064.5(a). If the site qualifies as a historical resource, potential adverse impacts must be considered in the same manner as a historical resource (OHP 2001a). If the archaeological site does not qualify as a historical resource but does qualify as a unique archaeological site, then the archaeological site is treated in accordance with PRC Section 21083.2 (CCR Title 14(3) Section 15069.5(c)(3)). In practice, most archaeological sites that meet the definition of a unique archaeological resource will also meet the definition of a historical resource. CEQA defines a “unique archaeological resource” as an archaeological artifact, object, or site about which it can be clearly demonstrated that, without merely adding to the current body of knowledge, there is a high probability that it meets one or more of the following criteria:

- Contains information needed to answer important scientific research questions and that there is a demonstrable public interest in that information; or
- Has a special and particular quality such as being the oldest of its type or the best available example of its type; or
- Is directly associated with a scientifically recognized important prehistoric or historic event or person (PRC Section 21083.2(g)).
If an impact to a historical or archaeological resource is significant, CEQA requires feasible measures to minimize the impact (CCR Title 14(3) Section 15126.4 (a)(1)). Mitigation of significant impacts must lessen or eliminate the physical impact that the project will have on the resource. Generally, the use of drawings, photographs, and/or displays does not mitigate the physical impact on the environment caused by demolition or destruction of a historical resource. However, CEQA (PRC Section 21002.1(b)) requires that all feasible mitigation be undertaken even if it does not mitigate impacts to a less than significant level (OHP 2001a:9).
California Register of Historical Resources

The California Register is a guide to cultural resources that must be considered when a government agency undertakes a discretionary action subject to CEQA. The California Register helps government agencies identify and evaluate California’s historical resources (OHP 2001b:1) and indicates which properties are to be protected, to the extent prudent and feasible, from substantial adverse change (PRC Section 5024.1(a)). Any resource listed in, or eligible for listing in, the California Register is to be considered during the CEQA process (OHP 2001a:7).

A cultural resource is evaluated under four California Register criteria to determine its historical significance. A resource must be significant in accordance with one or more of the following criteria:

1. Is associated with events that have made a significant contribution to the broad pattern of California’s history and cultural heritage;
2. Is associated with the lives of persons important in our past;
3. Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or
4. Has yielded, or may be likely to yield, information important in prehistory or history.

Age

In addition to meeting one or more of the above criteria, the California Register requires that sufficient time must have passed to allow a “scholarly perspective on the events or individuals associated with the resource.” Fifty years is used as a general estimate of the time needed to understand the historical importance of a resource (OHP 2006:3). The California Office of Historic Preservation (OHP) recommends documenting, and taking into consideration in the planning process, any cultural resource that is 45 years or older (OHP 1995:2).

Period of Significance

The period of significance for a property is “the length of time when a property was associated with important events, activities, persons, or attained the characteristics which qualify it for National Register listing” (NPS 1997b:42). The period of significance begins with the date of the earliest important land use or activity that is reflected by historic characteristics tangible today. The period closes with the date when events having historical importance ended. The period of significance for an archaeological property is “the broad span of time about which the site or district is likely to provide information” (NPS 1997b:42). Archaeological properties may have more than one period of significance.

Historic Context

The significance of cultural resources is generally evaluated using a historic context that groups information about related historical resources based on theme, geographic limits, and chronological period (OHP 1995:11).
Integrity

The California Register also requires a resource to possess integrity, which is defined as “the authenticity of a historical resource’s physical identity evidenced by the survival of characteristics that existed during the resource’s period of significance. Integrity is evaluated with regard to the retention of location, design, setting, materials, workmanship, feeling, and association” (OHP 2006:2).

Archaeologists use the term “integrity” to describe the level of preservation or quality of information contained within a district, site, or excavated assemblage. Integrity is relative to the specific significance which the resource conveys. Although it is possible to correlate the seven aspects of integrity with standard archaeological site characteristics, those aspects are often unclear for evaluating the ability of an archaeological resource to convey significance under Criterion 4. The integrity of archaeological resources is judged according to the site’s ability to yield scientific and cultural information that can be used to address important research questions (NPS 1997a:44–49).

Eligibility

Resources that are significant, meet the age guidelines, and possess integrity are considered eligible for listing in the California Register.
IDENTIFICATION EFFORTS

In support of the project, Michael Baker International cultural staff conducted a records search at the North Central Information Center (NCIC), intensive-level archaeological field survey, and historic map research of the project area. The intent of the records search and the field survey were to identify cultural resources within the project area that may be impacted by the project.

RECORDS SEARCH

To determine the presence of previously identified cultural resources, Michael Baker International staff conducted a records search (File No.: SAC-16-125) at the NCIC for the project area on August 4, 2016 (Attachment 2). The NCIC, as part of the California Historical Resources Information System, California State University, Sacramento, an affiliate of the OHP, is the official state repository of cultural resource records and reports for Sacramento County.

As part of the records search, the following federal and state of California inventories were reviewed by the NCIC:

- California Inventory of Historic Resources (OHP 1976).
- California Points of Historical Interest (OHP 1992 and updates).
- California Historical Landmarks (OHP 1996).
- Archaeological Determinations of Eligibility (OHP 2012a). The directory includes eligibility determinations for archaeological resources in Sacramento County.
- Directory of Properties in the Historic Property Data File (OHP 2012b). The directory includes the listings of the National Register of Historic Places (National Register), National Historic Landmarks, California Register, California Historical Landmarks, and California Points of Historical Interest.

Results

Two cultural resources studies were conducted within the project area, as summarized below:

Bakic, Tracy
2001 “Historic Property Survey Report for the Auburn Boulevard/Sylvan Road Intersection Improvement Project, City of Citrus Heights, Sacramento County, California.” PAR Environmental Services, Inc.

This report documents the methods and results of two cultural resource studies completed for Section 106 and CEQA compliance for the California Department of Transportation. The two studies included an Archaeological Survey Report (ASR) and Historic Architectural Survey Report (HASR). No prehistoric or historic archaeological sites were identified within the Area of Potential Effect, which includes the entirety of the project area. The HASR evaluated and recommended 10 built environment resources not eligible for inclusion in the National Register and California Register. The State Historic Preservation Officer (SHPO) concurred with the evaluations on August 8, 2001.

Roland, Carol

The purpose of this document was to develop the historic context and important broad themes of the City's history, and identify and evaluate historic resources within those themes. The historic context identified transportation, settlement, civic institutions, and commercial development as important themes. The context identified 12 properties as lacking integrity for listing on the California Register and National Register, but are of local historic interest; two properties suitable for listing as Points of Historic Interest; and five properties which appear eligible for listing in both the National Register and California Register. Eight of these resources are located within the quarter-mile of the project area. None of these resources are located within the project area.

Three cultural resource studies were conducted within a quarter-mile of the project area. No cultural resources were identified within or adjacent to the project area as a result of the studies.

TABLE 1. STUDIES COMPLETED WITHIN A QUARTER-MILE OF THE PROJECT AREA

<table>
<thead>
<tr>
<th>Author</th>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eleanor H. Derr</td>
<td>1998</td>
<td>“Pacific Bell Mobile Services: 7236 Auburn Blvd.”</td>
</tr>
</tbody>
</table>

One cultural resource was identified within the project area. The resource description is as follows:

- **Sylvan Middle School (P-34-000618)** – This school complex consists of 18 single-story buildings built in different phases between 1938 and 1967. It was evaluated and determined not eligible for the National Register or California Register due to a lack of integrity of design, setting, materials, workmanship, and feeling. Further, several middle school campuses in the greater Sacramento area exhibit similar design features and this example is not unique. Due to its lack of integrity and architectural and historical significance, SHPO concurred with the eligibility evaluation on August 8, 2001 (OHP 2012b; Bakic and Baker 2001).

Fourteen cultural resources were identified within the quarter-mile search radius of the project area. The following table provides a brief outline of the resources and their significance:
TABLE 2. RESOURCES WITHIN THE QUARTER-MILE SEARCH RADIUS OF THE PROJECT AREA

<table>
<thead>
<tr>
<th>Resource Name and Number</th>
<th>Address</th>
<th>Resource Type</th>
<th>OHP Status Code</th>
<th>Identified as significant in the Citrus Heights Historical Resources Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-34-000609</td>
<td>6980 Sylvan Road</td>
<td>Single-family residence</td>
<td>6Y</td>
<td>No</td>
</tr>
<tr>
<td>P-34-000610</td>
<td>7008 Sylvan Road</td>
<td>Single-family residence</td>
<td>6Y</td>
<td>No</td>
</tr>
<tr>
<td>P-34-000611</td>
<td>7016 Sylvan Road</td>
<td>Single-family residence</td>
<td>6Y</td>
<td>No</td>
</tr>
<tr>
<td>P-34-000612</td>
<td>7024 Sylvan Road</td>
<td>Single-family residence</td>
<td>6Y</td>
<td>Yes</td>
</tr>
<tr>
<td>P-34-000613 and P-34-004043</td>
<td>7545 Old Auburn Road</td>
<td>Single-family residence</td>
<td>6Y</td>
<td>Yes</td>
</tr>
<tr>
<td>P-34-000614 and P-34-004042</td>
<td>7541 Old Auburn Road</td>
<td>Single-family residence</td>
<td>6Y</td>
<td>Yes</td>
</tr>
<tr>
<td>P-34-000615</td>
<td>7120 Auburn Boulevard</td>
<td>Commercial Building</td>
<td>6Y</td>
<td>No</td>
</tr>
<tr>
<td>P-34-000616</td>
<td>7106 Auburn Boulevard</td>
<td>Commercial Building</td>
<td>6Y</td>
<td>No</td>
</tr>
<tr>
<td>P-34-000617</td>
<td>7200 Auburn Boulevard</td>
<td>Commercial Building</td>
<td>6Y</td>
<td>No</td>
</tr>
<tr>
<td>Friends Church</td>
<td>7600 Auburn Boulevard</td>
<td>Church</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>P-34-004034</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sylvan Cemetery</td>
<td>7401 Auburn Boulevard</td>
<td>Cemetery</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>P-34-004035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sylvan School</td>
<td>7011 Sylvan Road</td>
<td>School</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>P-34-004036</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-34-004044</td>
<td>7599 Old Auburn Road</td>
<td>Single-family residence</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>Resource Name and Number</td>
<td>Address</td>
<td>Resource Type</td>
<td>OHP Status Code</td>
<td>Identified as significant in the Citrus Heights Historical Resources Survey</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>P-34-004045</td>
<td>7601 Old Auburn Road</td>
<td>Single-family residence</td>
<td>N/A</td>
<td>Yes</td>
</tr>
</tbody>
</table>

HISTORICAL MAP REVIEW

Michael Baker International reviewed historical maps for archaeological, ethnographic, and historical information about the project area and its vicinity to determine the presence of cultural resources. This review included:

- Plat of Township 10N Range 6 East Mount Diablo Base Meridian (Bureau of Land Management [BLM] 1866)
- Antelope, Calif., 7.5-minute topographic quadrangle (USGS 1911)
- Citrus Heights, Calif. 7.5-minute topographic quadrangle (USGS 1951)

Results

- No features are depicted within the project area in the 1866 Plat of Township 10N Range 6 East (BLM 1866).
- The 1911 Antelope, Calif. Topographic quadrangle depicts the Sylvan School (P-34-004036) within the project area. No additional features are present.
- The 1951 Citrus Heights, Calif. topographic quadrangle depicts the Sylvan Middle School (P-34-000618) within the project area. No other features are present.

SITE-SPECIFIC HISTORY

The only mapped feature prior to the Sylvan Middle School (P-34-000618), was the Sylvan School (P-34-004036). Sylvan School open in 1863 as a one-room building. It was constructed by John Cross, a local farmer, John Aiston, and Peter Van Maren. The school originally displayed simple Greek revival style detailing, but in 1903 was remodeled with a more formal appearance, with the addition of Doric columns and a bell tower. The school also served as a community gathering place for meetings, dances, and other civic activities. The Sylvan name was used for the later creation of the Sylvan school district (Roland 2006: 8).

In 1927, the community deemed the building too small and the building was moved by the Citrus Heights Community Club to its current location at 7011 Sylvan Road. The building then functioned as the club’s headquarters (Roland 2006: 14). By 1938, the components of the extant Sylvan Middle School complex were built. The school was expanded in 1958 and again in 1967 (Bakic and Baker 2001).
FIELD SURVEY

Michael Baker International archaeologist Michael Elliott conducted an archaeological field survey of the project area on August 18, 2016. The survey was conducted to identify cultural resources within the project area. Results of the survey are provided below.

All components of the school compound were surveyed including athletic fields, play areas, landscaping, gravel lots, and fence lines. Visible surface areas within the project area were surveyed using 1 to 5 meter north/south transects. The entire project area was surveyed with 100% coverage and visibility from 20–90%. Special attention was given to rodent back-dirt.

Results

No cultural materials were identified during the field survey.

SUMMARY OF RESULTS AND RECOMMENDATIONS

Based on the results of this study, the project does not have the potential to impact known historical resources as defined by CEQA. However, the project area may contain cultural resources or human remains. Cultural resources may include prehistoric and historic-era archaeological deposits. The following are actions for the District to take should cultural resources or human remains be discovered during project-related activities.

Encountering Archaeological Deposits

If deposits of prehistoric or historical materials are encountered during project construction, it is recommended that all work within 50 feet be halted until a qualified archaeologist can evaluate the findings and provide recommendations. Prehistoric materials can include flaked-stone tools (e.g., projectile points, knives, choppers) or obsidian, chert, or quartzite toolmaking debris; culturally darkened soil (i.e., midden soil often containing heat-affected rock, ash, and charcoal, shellfish remains, and cultural materials); and stone milling equipment (e.g., mortars, pestles, handstones). Historical materials may include wood, stone, or concrete footings, walls, and other structural remains; debris-filled wells or privies; and deposits of wood, metal, glass, ceramics, and other refuse.

Encountering Human Remains

Section 7050.5 of the California Health and Safety Code states that in the event of discovery or recognition of any human remains in any location other than a dedicated cemetery, there shall be no further excavation or disturbance of the site or any nearby area reasonably suspected to overlie adjacent remains until the coroner of the county in which the human remains are discovered has determined whether or not the remains are subject to the coroner’s authority. If human remains are encountered, work should halt within 50 feet of the find and the county coroner notified immediately. At the same time, an archaeologist should be contacted to evaluate the situation. If the human remains are of Native American origin, the coroner must notify the Native American Heritage Commission within 24 hours of this identification. The commission will identify a Native American most likely descendent to inspect the site and provide recommendations for the proper treatment of the remains and associated grave goods.
PREPARER QUALIFICATIONS

MICHAEL ELLIOTT, ARCHAEOLOGIST

Mr. Elliott is an archaeologist with over 15 years of experience in cultural resource management. His experience includes archaeological survey and site documentation, excavation of prehistoric and historic sites, monitoring of subsurface construction activities, project planning and supervision, preparation of cultural resources technical studies pursuant to CEQA and Section 106 of the National Historic Preservation Act, and professional technical illustration. He has participated in numerous projects in 36 California counties (65+ sites excavated/350+ surveyed) and western Nevada. He meets the Secretary of the Interior’s Professional Qualification Standards for archaeology.

MARGO NAYYAR, CULTURAL RESOURCE MANAGER

Ms. Nayyar is an architectural historian with five years of cultural resources management experience in California. Her experience includes built environment surveys, historic context development, archival research, evaluation of historic-era resources using guidelines outlined in the National and California Registers and various local registers, preparation of cultural resources technical studies pursuant to the CEQA and Section 106 of the National Historic Preservation Act, municipal preservation planning, general plan updates, and CLG training to interested local governments. She also specializes in producing HABS/HAER/HALS (Historic American Buildings Survey, the Historic American Engineering Record, and Historic American Landscapes Survey) heritage documentation. Ms. Nayyar meets the Secretary of the Interior’s Professional Qualification Standards for history and architectural history.

NICHOLE JORDAN DAVIS, SENIOR CULTURAL RESOURCES MANAGER

This report was reviewed by Michael Baker Senior Cultural Resources Manager, Nichole Davis. Ms. Davis is a registered professional archaeologist (#989208) and a member of the Society for California Archaeology, the Society for American Archaeology, and the California Council for the Promotion of History. She meets the Secretary of the Interior’s Standards for prehistoric and historical archaeology and the Society for California’s Archaeology’s professional qualification standards for Principal Investigator. Ms. Davis has 13 years of experience in cultural resources management, including project management, personnel management, archival research, laboratory analysis, ethnographic and historical research, field survey, prehistoric and historical excavation, laboratory analysis, collections management, and GIS applications.
Sincerely,

Margo Nayyar, M.A. Nichole Jordan Davis, RPA
Architectural Historian Senior Cultural Resources Manager

Attachments

Attachment 1 – Figures 1–2

Attachment 2 – North Central Information Center Records Search Results
REFERENCES CITED

Arrington, Cindy and Nancy Sikes.

Bakic, Tracy

Bakic, Tracy and Cindy Baker
2001 DPR 523 Evaluation of Sylvan Middle School (P-34-000618). On file at the North Central Information Center.

BLM (Bureau of Land Management)

Derr, Eleanor H.

Hack, Catherine

NPS (National Park Service)

OHP (California Office of Historic Preservation)
1976 California Inventory of Historic Resources. California Department of Parks and Recreation, Sacramento.

1996 California Historical Landmarks. California Department of Parks and Recreation, Sacramento.

2001a California Environmental Quality Act (CEQA) and Historical Resources. Technical Assistance Series No. 1. California Department of Parks and Recreation, Sacramento.
2001b California Register of Historical Resources: Q&A for Local Governments. Technical Assistance Series No. 4. California Department of Parks and Recreation, Sacramento.

Roland, Carol

USGS (US Geological Survey)
1911 Antelope, Calif. 7.5-minute topographic quadrangle.

1951 Citrus Heights, Calif. 7.5-minute topographic quadrangle.
Attachment 1

Figures
FIGURE 1
Regional Vicinity

Legend
- Project Site

Source: ESRI streetmap.

Sacramento County

Citrus Heights

Map Detail

FIGURE 1
Regional Vicinity
FIGURE 2
Project Location

Legend

Project Site

Source: Sacramento County (2016); ESRI.
Attachment 2

North Central Information Center Records Search Results
8/4/2016

Margo Nayyar
Michael Baker International
2729 Prospect Park Drive, Suite 220
Rancho Cordova, CA 95670

Records Search Invoice for
Sylvan School Demolition Project

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Unit Price</th>
<th>Line Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Staff research hours</td>
<td>150.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>In-house research hours</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>0</td>
<td>Staff assistance hours</td>
<td>40.00</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>Custom map features</td>
<td></td>
<td>150.00</td>
</tr>
<tr>
<td>0</td>
<td>Shapefile features</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>Digital database features</td>
<td>0.25</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Quads (crossed into)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Printed pages/PDF pages</td>
<td>0.15</td>
<td>14.10</td>
</tr>
<tr>
<td>0</td>
<td>PDF flat fee</td>
<td>25.00</td>
<td></td>
</tr>
</tbody>
</table>

	Subtotal	264.10	
50% fee			
	Total	264.10	

Forward payment to:
North Central Information Center
California State University, Sacramento | Folsom Hall, Suite 2042
6000 J Street | Sacramento, CA 95819-6100

Make checks payable to:
University Enterprises, Inc.

To view the CHRIS IC Electronic Fee Structure please visit:
Report Detail: 003045

Identifiers
- Report No.: 003045
- Other IDs:
- Cross-refs:

Citation information
- Author(s): Catherine Hack
- Year: 1991 (Nov)
- Title: Draft Environmental Impact Report for Stock Ranch General Plan Amendment Community Plan Amendment and Rezone
- Affiliation: Department of Environmental Review and Assessment
- No. pages: 440
- No. maps:
- Attributes: Other research
- Inventory size:
- Disclosure: Not for publication
- Collections: No

General notes
- EIR

Associated resources
- No. resources: 0
- Has informals: No

Location information
- County(ies): Sacramento
- USGS quad(s): CITRUS HTS
- Address:
- PLSS:

Database record metadata
- Date	User
- Entered: 10/30/200 Courtney Cha
- Last modified: 8/21/2014 kmr37
- IC actions: Date	User	Action taken
 11/8/2006	jay	Added records from old Library database
 10/7/2009	Machiel	Survey plotted in GIS
- Record status: Verified
Report Detail: 006288

Identifiers
- Report No.: 006288
- Other IDs:
- Cross-refs:

Citation information
- Author(s): Derr, Eleanor H.
- Year: 1998
- Title: Pacific Bell Mobile Services: 7236 Auburn Blvd.
- Affiliation:
- No. pages:
- No. maps:
- Attributes:
- Inventory size: no area provided
- Disclosure:
- Collections:

General notes

Associated resources
- No. resources: 0
- Has informals:

Location information
- County(ies): Sacramento
- USGS quad(s): CITRUS HTS
- Address:
- PLSS:

Database record metadata

<table>
<thead>
<tr>
<th>Date</th>
<th>User</th>
<th>Action taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entered:</td>
<td>7/28/2005</td>
<td>Gabe Aeschli</td>
</tr>
<tr>
<td>Last modified:</td>
<td>8/5/2009</td>
<td>Machiel</td>
</tr>
<tr>
<td>IC actions: Date</td>
<td>User</td>
<td>Action taken</td>
</tr>
<tr>
<td>11/8/2006</td>
<td>jay</td>
<td>Added records from old Library database</td>
</tr>
<tr>
<td>8/5/2009</td>
<td>Machiel</td>
<td>Survey plotted in GIS</td>
</tr>
</tbody>
</table>

Record status:
<table>
<thead>
<tr>
<th>Primary No.</th>
<th>Trinomial</th>
<th>Other IDs</th>
<th>Type</th>
<th>Age</th>
<th>Attribute codes</th>
<th>Recorded by</th>
<th>Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-34-000609</td>
<td></td>
<td>Other - 24</td>
<td>Building</td>
<td>Historic</td>
<td>HP02 (Single family property)</td>
<td>2001 (Tracy Bakic, PAR Environmental Services, Inc.)</td>
<td>002670</td>
</tr>
<tr>
<td>P-34-000610</td>
<td></td>
<td>Other - 23</td>
<td>Building</td>
<td>Historic</td>
<td>HP02 (Single family property)</td>
<td>2001 (Tracy Bakic, PAR Environmental Services, Inc.)</td>
<td>002670</td>
</tr>
<tr>
<td>P-34-000611</td>
<td></td>
<td>Other - 22</td>
<td>Building</td>
<td>Historic</td>
<td>HP02 (Single family property)</td>
<td>2001 (Tracy Bakic, PAR Environmental Services, Inc.)</td>
<td>002670</td>
</tr>
<tr>
<td>P-34-000612</td>
<td></td>
<td>Other - 21; Other - 7024 Sylvan Road</td>
<td>Building</td>
<td>Historic</td>
<td>HP02 (Single family property)</td>
<td>2001 (Tracy Bakic, PAR Environmental Services, Inc.); 2006 (Carol Roland, Roland-Nawi Associates)</td>
<td>002670, 010382</td>
</tr>
<tr>
<td>P-34-000613</td>
<td></td>
<td>Other - 12</td>
<td>Building</td>
<td>Historic</td>
<td>HP02 (Single family property)</td>
<td>2001 (Tracy Bakic, PAR Environmental Services, Inc.)</td>
<td>002670</td>
</tr>
<tr>
<td>P-34-000614</td>
<td></td>
<td>Other - 11</td>
<td>Building</td>
<td>Historic</td>
<td>HP02 (Single family property)</td>
<td>2001 (Tracy Bakic, PAR Environmental Services, Inc.)</td>
<td>002670</td>
</tr>
<tr>
<td>P-34-000615</td>
<td></td>
<td>Other - 8</td>
<td>Building</td>
<td>Historic</td>
<td>HP06 (1-3 story commercial building)</td>
<td>2001 (Tracy Bakic, PAR Environmental Services, Inc.)</td>
<td>002670</td>
</tr>
<tr>
<td>P-34-000616</td>
<td></td>
<td>Other - 9</td>
<td>Building</td>
<td>Historic</td>
<td>HP06 (1-3 story commercial building)</td>
<td>2001 (Tracy Bakic, PAR Environmental Services, Inc.)</td>
<td>002670</td>
</tr>
<tr>
<td>P-34-000617</td>
<td></td>
<td>Other - 6</td>
<td>Building</td>
<td>Historic</td>
<td>HP06 (1-3 story commercial building)</td>
<td>2001 (Tracy Bakic, PAR Environmental Services, Inc.)</td>
<td>002670</td>
</tr>
<tr>
<td>P-34-000618</td>
<td></td>
<td>Resource Name - Sylvan Middle School; Other - 2</td>
<td>Building</td>
<td>Historic</td>
<td>HP15 (Educational building)</td>
<td>2001 (Tracy Bakic, PAR Environmental Services, Inc.)</td>
<td>002670</td>
</tr>
<tr>
<td>P-34-004034</td>
<td></td>
<td>Resource Name - Friends Church</td>
<td>Building</td>
<td>Historic</td>
<td>HP16 (Religious building)</td>
<td>2006 (Carol Roland, Roland-Nawi Associates)</td>
<td>010382</td>
</tr>
<tr>
<td>P-34-004035</td>
<td></td>
<td>Resource Name - Sylvan Cemetery</td>
<td>Site</td>
<td>Historic</td>
<td>HP40 (Cemetery)</td>
<td>2006 (Carol Roland, Roland-Nawi Associates)</td>
<td>010382</td>
</tr>
<tr>
<td>P-34-004036</td>
<td></td>
<td>Resource Name - Sylvan School</td>
<td>Building</td>
<td>Historic</td>
<td>HP13 (Community center/social hall); HP15 (Educational building)</td>
<td>2006 (Carol Roland, Roland-Nawi Associates)</td>
<td>010382</td>
</tr>
<tr>
<td>P-34-004042</td>
<td></td>
<td></td>
<td>Building</td>
<td>Historic</td>
<td>HP02 (Single family property)</td>
<td>2006 (Carol Roland, Roland-Nawi Associates)</td>
<td>010382</td>
</tr>
<tr>
<td>P-34-004043</td>
<td></td>
<td></td>
<td>Building</td>
<td>Historic</td>
<td>HP02 (Single family property)</td>
<td>2006 (Carol Roland, Roland-Nawi Associates)</td>
<td>010382</td>
</tr>
<tr>
<td>P-34-004044</td>
<td></td>
<td></td>
<td>Building</td>
<td>Historic</td>
<td>HP02 (Single family property)</td>
<td>2006 (Carol Roland, Roland-Nawi Associates)</td>
<td>010382</td>
</tr>
</tbody>
</table>
Resource List

<table>
<thead>
<tr>
<th>Primary No.</th>
<th>Trinomial</th>
<th>Other IDs</th>
<th>Type</th>
<th>Age</th>
<th>Attribute codes</th>
<th>Recorded by</th>
<th>Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-34-004045</td>
<td></td>
<td></td>
<td>Building</td>
<td>Historic</td>
<td>HP02 (Single family property)</td>
<td>2006 (Carol Roland, Roland-Nawi Associates)</td>
<td>003469, 010382</td>
</tr>
</tbody>
</table>
APPENDIX D:
GREENHOUSE GAS DATA
Sylvan Middle School Demolition Project
Sacramento County, Annual

1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior High School</td>
<td>57.60</td>
<td>1000sqft</td>
<td>13.00</td>
<td>57,597.00</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

- Urbanization: Urban
- Wind Speed (m/s): 3.5
- Climate Zone: 6
- Precipitation Freq (Days): 58
- Operational Year: 2017

Utility Company: Sacramento Municipal Utility District

1.3 User Entered Comments & Non-Default Data

Project Characteristics -
Land Use - Project site = 13 acres
Construction Phase -
Demolition -
Vehicle Trips - No operational phase
Energy Use - No operational phase

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.32</td>
<td>13.00</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>OperationalYear</td>
<td>2014</td>
<td>2017</td>
</tr>
</tbody>
</table>
2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>0.0447</td>
<td>0.4662</td>
<td>0.3986</td>
<td>5.3000e-004</td>
<td>0.0419</td>
<td>0.0218</td>
<td>0.0637</td>
<td>6.8200e-003</td>
<td>0.0203</td>
<td>0.0271</td>
<td>0.0000</td>
<td>48.4495</td>
<td>48.4495</td>
<td>0.0102</td>
<td>0.0000</td>
<td>48.6630</td>
</tr>
<tr>
<td>Total</td>
<td>0.0447</td>
<td>0.4662</td>
<td>0.3986</td>
<td>5.3000e-004</td>
<td>0.0419</td>
<td>0.0218</td>
<td>0.0637</td>
<td>6.8200e-003</td>
<td>0.0203</td>
<td>0.0271</td>
<td>0.0000</td>
<td>48.4495</td>
<td>48.4495</td>
<td>0.0102</td>
<td>0.0000</td>
<td>48.6630</td>
</tr>
</tbody>
</table>

Mitigated Construction

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>0.0447</td>
<td>0.4662</td>
<td>0.3986</td>
<td>5.3000e-004</td>
<td>0.0419</td>
<td>0.0218</td>
<td>0.0637</td>
<td>6.8200e-003</td>
<td>0.0203</td>
<td>0.0271</td>
<td>0.0000</td>
<td>48.4494</td>
<td>48.4494</td>
<td>0.0102</td>
<td>0.0000</td>
<td>48.6629</td>
</tr>
<tr>
<td>Total</td>
<td>0.0447</td>
<td>0.4662</td>
<td>0.3986</td>
<td>5.3000e-004</td>
<td>0.0419</td>
<td>0.0218</td>
<td>0.0637</td>
<td>6.8200e-003</td>
<td>0.0203</td>
<td>0.0271</td>
<td>0.0000</td>
<td>48.4494</td>
<td>48.4494</td>
<td>0.0102</td>
<td>0.0000</td>
<td>48.6629</td>
</tr>
</tbody>
</table>
2.2 Overall Operational

Unmitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>0.2651</td>
<td>1.0000e-005</td>
<td>7.5000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4300e-003</td>
<td>1.4300e-003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.5100e-003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>5.1950</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>4.9800e-003</td>
<td>0.0453</td>
<td>0.0380</td>
<td>2.7000e-004</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>0.0000</td>
<td>176.1943</td>
<td>176.1943</td>
<td>7.1800e-003</td>
<td>2.1900e-003</td>
<td>509.3224</td>
<td>0.0000</td>
<td>0.0000</td>
<td>508.8639</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.3361</td>
<td>0.6982</td>
<td>3.3337</td>
<td>6.8800e-003</td>
<td>0.4645</td>
<td>9.1500e-003</td>
<td>0.4737</td>
<td>0.1244</td>
<td>8.4200e-003</td>
<td>0.1329</td>
<td>0.0000</td>
<td>508.8639</td>
<td>0.0218</td>
<td>0.0000</td>
<td>509.3224</td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>15.2000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.8983</td>
<td>0.0000</td>
<td>34.0641</td>
</tr>
<tr>
<td>Water</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.4202</td>
<td>4.4470</td>
<td>4.8670</td>
<td>1.6600e-003</td>
<td>9.6000e-004</td>
<td>5.1950</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.6061</td>
<td>0.7435</td>
<td>3.3725</td>
<td>6.9500e-003</td>
<td>0.4645</td>
<td>0.0126</td>
<td>0.4771</td>
<td>0.1244</td>
<td>0.0119</td>
<td>0.1363</td>
<td>15.6202</td>
<td>689.5066</td>
<td>705.1267</td>
<td>0.9290</td>
<td>3.1500e-003</td>
<td>725.6125</td>
</tr>
</tbody>
</table>
2.2 Overall Operational

Mitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>0.2651</td>
<td>1.0000e-005</td>
<td>7.5000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4300e-003</td>
<td>1.4300e-003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.5100e-003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>4.9800e-003</td>
<td>0.0453</td>
<td>0.0380</td>
<td>2.7000e-004</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>0.0000</td>
<td>176.1943</td>
<td>176.1943</td>
<td>7.1800e-003</td>
<td>2.1900e-003</td>
<td>177.0250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0.3361</td>
<td>0.6982</td>
<td>3.3337</td>
<td>6.6800e-003</td>
<td>0.4645</td>
<td>9.1500e-003</td>
<td>0.4737</td>
<td>0.1244</td>
<td>8.4200e-003</td>
<td>0.1329</td>
<td>0.0000</td>
<td>508.8639</td>
<td>508.8639</td>
<td>0.0218</td>
<td>0.0000</td>
<td>509.3224</td>
</tr>
<tr>
<td>Waste</td>
<td>0.0000</td>
<td>34.0641</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.4202</td>
<td>4.4470</td>
<td>4.8672</td>
<td>1.6700e-003</td>
<td>9.6000e-004</td>
<td>5.2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.6061</td>
<td>0.7435</td>
<td>3.3725</td>
<td>6.9500e-003</td>
<td>0.4645</td>
<td>0.0126</td>
<td>0.4771</td>
<td>0.0119</td>
<td>0.1363</td>
<td>15.6202</td>
<td>689.5066</td>
<td>705.1267</td>
<td>0.9290</td>
<td>3.1500e-003</td>
<td>725.6129</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Reduction</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

3.0 Construction Detail

Construction Phase

<table>
<thead>
<tr>
<th>Phase Number</th>
<th>Phase Name</th>
<th>Phase Type</th>
<th>Start Date</th>
<th>End Date</th>
<th>Num Days Week</th>
<th>Num Days</th>
<th>Phase Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Demolition</td>
<td>Demolition</td>
<td>1/1/2017</td>
<td>1/27/2017</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Acres of Grading (Site Preparation Phase): 0
3.1 Mitigation Measures Construction

OffRoad Equipment

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Offroad Equipment Type</th>
<th>Amount</th>
<th>Usage Hours</th>
<th>Horse Power</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>Concrete/Industrial Saws</td>
<td>1</td>
<td>8.00</td>
<td>81</td>
<td>0.73</td>
</tr>
<tr>
<td>Demolition</td>
<td>Excavators</td>
<td>3</td>
<td>8.00</td>
<td>162</td>
<td>0.38</td>
</tr>
<tr>
<td>Demolition</td>
<td>Rubber Tired Dozers</td>
<td>2</td>
<td>8.00</td>
<td>255</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Trips and VMT

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Offroad Equipment Count</th>
<th>Worker Trip Number</th>
<th>Vendor Trip Number</th>
<th>Hauling Trip Number</th>
<th>Worker Trip Length</th>
<th>Vendor Trip Length</th>
<th>Hauling Trip Length</th>
<th>Worker Vehicle Class</th>
<th>Vendor Vehicle Class</th>
<th>Hauling Vehicle Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td></td>
<td>6</td>
<td>15.00</td>
<td>0.00</td>
<td>337.00</td>
<td>10.00</td>
<td>6.50</td>
<td>20.00-LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
</tr>
</tbody>
</table>
3.2 Demolition - 2017

Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0380</td>
<td>0.0000</td>
<td>0.0380</td>
<td>5.7500e-003</td>
<td>0.0000</td>
<td>5.7500e-003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.0405</td>
<td>0.4270</td>
<td>0.3389</td>
<td>4.0000e-004</td>
<td>0.0213</td>
<td>0.0213</td>
<td>0.0198</td>
<td>0.0198</td>
<td></td>
<td>0.0000</td>
<td>36.6182</td>
<td>36.6182</td>
<td>0.0101</td>
<td>0.0000</td>
<td>36.8292</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0405</td>
<td>0.4270</td>
<td>0.3389</td>
<td>4.0000e-004</td>
<td>0.0380</td>
<td>0.0213</td>
<td>0.0592</td>
<td>5.7500e-003</td>
<td>0.0198</td>
<td>0.0256</td>
<td>0.0000</td>
<td>36.6182</td>
<td>36.6182</td>
<td>0.0101</td>
<td>0.0000</td>
<td>36.8292</td>
</tr>
</tbody>
</table>

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>3.8100e-003</td>
<td>0.0387</td>
<td>0.0541</td>
<td>1.2000e-004</td>
<td>2.8300e-003</td>
<td>5.5000e-004</td>
<td>3.3800e-003</td>
<td>7.8000e-004</td>
<td>5.1000e-004</td>
<td>1.2800e-003</td>
<td>0.0000</td>
<td>10.8870</td>
<td>10.8870</td>
<td>7.0000e-005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>4.5000e-004</td>
<td>5.4000e-004</td>
<td>5.6100e-003</td>
<td>1.0000e-005</td>
<td>1.1000e-003</td>
<td>1.0000e-005</td>
<td>1.1100e-003</td>
<td>2.9000e-004</td>
<td>1.0000e-005</td>
<td>3.0000e-004</td>
<td>0.0000</td>
<td>0.9443</td>
<td>0.9443</td>
<td>5.0000e-005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.2600e-003</td>
<td>0.0392</td>
<td>0.0597</td>
<td>1.3000e-004</td>
<td>3.9300e-003</td>
<td>5.6000e-004</td>
<td>4.4900e-003</td>
<td>1.0700e-003</td>
<td>5.2000e-004</td>
<td>1.5800e-003</td>
<td>0.0000</td>
<td>11.8313</td>
<td>11.8313</td>
<td>1.2000e-004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0380</td>
<td>0.0000</td>
<td>0.0380</td>
<td>5.7500e-003</td>
<td>0.0000</td>
<td>5.7500e-003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.0405</td>
<td>0.4270</td>
<td>0.389</td>
<td>4.0000e-004</td>
<td>0.0213</td>
<td>0.0213</td>
<td>0.0198</td>
<td>0.0198</td>
<td>0.0000</td>
<td>36.6182</td>
<td>36.6182</td>
<td>0.0101</td>
<td>0.0000</td>
<td>36.8291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0405</td>
<td>0.4270</td>
<td>0.389</td>
<td>4.0000e-004</td>
<td>0.0380</td>
<td>0.0213</td>
<td>0.0592</td>
<td>5.7500e-003</td>
<td>0.0198</td>
<td>0.0256</td>
<td>0.0000</td>
<td>36.6182</td>
<td>36.6182</td>
<td>0.0101</td>
<td>0.0000</td>
<td>36.8291</td>
</tr>
</tbody>
</table>

Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>3.8100e-003</td>
<td>0.0387</td>
<td>0.0541</td>
<td>1.2000e-004</td>
<td>2.8300e-003</td>
<td>5.5000e-004</td>
<td>3.3800e-003</td>
<td>7.8000e-004</td>
<td>5.1000e-004</td>
<td>1.2800e-003</td>
<td>0.0000</td>
<td>10.8870</td>
<td>10.8870</td>
<td>7.0000e-005</td>
<td>0.0000</td>
<td>10.8885</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>4.5000e-004</td>
<td>5.4000e-004</td>
<td>5.6100e-003</td>
<td>1.0000e-005</td>
<td>1.1000e-003</td>
<td>1.1000e-003</td>
<td>1.1100e-003</td>
<td>2.9000e-004</td>
<td>1.0000e-005</td>
<td>3.0000e-004</td>
<td>0.0000</td>
<td>0.9443</td>
<td>0.9443</td>
<td>5.0000e-005</td>
<td>0.0000</td>
<td>0.9453</td>
</tr>
<tr>
<td>Total</td>
<td>4.2600e-003</td>
<td>0.0392</td>
<td>0.0597</td>
<td>1.3000e-004</td>
<td>3.9300e-003</td>
<td>5.6000e-004</td>
<td>4.4900e-003</td>
<td>1.0700e-003</td>
<td>5.2000e-004</td>
<td>1.5800e-003</td>
<td>0.0000</td>
<td>11.8313</td>
<td>11.8313</td>
<td>1.2000e-004</td>
<td>0.0000</td>
<td>11.8338</td>
</tr>
</tbody>
</table>

4.0 Operational Detail - Mobile
4.1 Mitigation Measures Mobile

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG (tons/yr)</th>
<th>NOx (tons/yr)</th>
<th>CO (tons/yr)</th>
<th>SO2 (tons/yr)</th>
<th>Fugitive PM10 (MT/yr)</th>
<th>Exhaust PM10 (MT/yr)</th>
<th>PM10 Total (MT/yr)</th>
<th>Fugitive PM2.5 (MT/yr)</th>
<th>Exhaust PM2.5 (MT/yr)</th>
<th>PM2.5 Total (MT/yr)</th>
<th>Bio- CO2 (MT/yr)</th>
<th>NBio- CO2 (MT/yr)</th>
<th>Total CO2 (MT/yr)</th>
<th>CH4 (MT/yr)</th>
<th>N2O (MT/yr)</th>
<th>CO2e (MT/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>0.3361</td>
<td>0.6982</td>
<td>3.3337</td>
<td>6.6800e-003</td>
<td>0.4645</td>
<td>9.1500e-003</td>
<td>0.4737</td>
<td>0.1244</td>
<td>8.4200e-003</td>
<td>0.1329</td>
<td>0.0000</td>
<td>508.8639</td>
<td>508.8639</td>
<td>0.0218</td>
<td>0.0000</td>
<td>509.3224</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>0.3361</td>
<td>0.6982</td>
<td>3.3337</td>
<td>6.6800e-003</td>
<td>0.4645</td>
<td>9.1500e-003</td>
<td>0.4737</td>
<td>0.1244</td>
<td>8.4200e-003</td>
<td>0.1329</td>
<td>0.0000</td>
<td>508.8639</td>
<td>508.8639</td>
<td>0.0218</td>
<td>0.0000</td>
<td>509.3224</td>
</tr>
</tbody>
</table>

4.2 Trip Summary Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Average Daily Trip Rate</th>
<th>Unmitigated</th>
<th>Mitigated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekday</td>
<td>Saturday</td>
<td>Sunday</td>
</tr>
<tr>
<td>Junior High School</td>
<td>793.69</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>793.69</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

4.3 Trip Type Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Miles</th>
<th>Trip %</th>
<th>Trip Purpose %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-W or C-W</td>
<td>H-S or C-C</td>
<td>H-O or C-NW</td>
</tr>
<tr>
<td>Junior High School</td>
<td>10.00</td>
<td>5.00</td>
<td>6.50</td>
</tr>
</tbody>
</table>

5.0 Energy Detail

4.4 Fleet Mix

<table>
<thead>
<tr>
<th>LDA</th>
<th>LDT1</th>
<th>LDT2</th>
<th>MDV</th>
<th>LHD1</th>
<th>LHD2</th>
<th>MHD</th>
<th>HHD</th>
<th>OBUS</th>
<th>UBUS</th>
<th>MCY</th>
<th>SBUS</th>
<th>MH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.504380</td>
<td>0.068251</td>
<td>0.178421</td>
<td>0.147199</td>
<td>0.044767</td>
<td>0.006294</td>
<td>0.020809</td>
<td>0.016358</td>
<td>0.002307</td>
<td>0.002286</td>
<td>0.006181</td>
<td>0.000572</td>
<td>0.002175</td>
</tr>
</tbody>
</table>

Historical Energy Use: N
5.1 Mitigation Measures Energy

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>126.9245</td>
<td>126.9245</td>
<td>6.2400e-003</td>
<td>1.2900e-003</td>
<td>127.4554</td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>126.9245</td>
<td>126.9245</td>
<td>6.2400e-003</td>
<td>1.2900e-003</td>
<td>127.4554</td>
<td></td>
</tr>
<tr>
<td>NaturalGas</td>
<td>4.9800e-003</td>
<td>0.0453</td>
<td>0.0380</td>
<td>2.7000e-004</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>0.0000</td>
<td>49.2697</td>
<td>49.2697</td>
<td>9.0000e-004</td>
<td>49.5696</td>
<td></td>
</tr>
<tr>
<td>NaturalGas</td>
<td>4.9800e-003</td>
<td>0.0453</td>
<td>0.0380</td>
<td>2.7000e-004</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>0.0000</td>
<td>49.2697</td>
<td>49.2697</td>
<td>9.0000e-004</td>
<td>49.5696</td>
<td></td>
</tr>
</tbody>
</table>

5.2 Energy by Land Use - NaturalGas

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior High School</td>
<td>923280</td>
<td>4.9800e-003</td>
<td>0.0453</td>
<td>0.0380</td>
<td>2.7000e-004</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>0.0000</td>
<td>49.2697</td>
<td>49.2697</td>
<td>9.0000e-004</td>
<td>49.5696</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.9800e-003</td>
<td>0.0453</td>
<td>0.0380</td>
<td>2.7000e-004</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>0.0000</td>
<td>49.2697</td>
<td>49.2697</td>
<td>9.0000e-004</td>
<td>49.5696</td>
<td></td>
</tr>
</tbody>
</table>
5.2 Energy by Land Use - Natural Gas

Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Natural Gas Use kBTU/yr</th>
<th>ROG tons/yr</th>
<th>NOx tons/yr</th>
<th>CO tons/yr</th>
<th>SO2 tons/yr</th>
<th>Fugitive PM10 Total MT/yr</th>
<th>Exhaust PM10 Total MT/yr</th>
<th>PM10 Total MT/yr</th>
<th>Fugitive PM2.5 Total MT/yr</th>
<th>Exhaust PM2.5 Total MT/yr</th>
<th>PM2.5 Total MT/yr</th>
<th>Bio- CO2 MT/yr</th>
<th>NBio- CO2 MT/yr</th>
<th>Total CO2 MT/yr</th>
<th>CH4 MT/yr</th>
<th>N2O MT/yr</th>
<th>CO2e MT/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior High School</td>
<td>923280</td>
<td>4.9800e-003</td>
<td>0.0453</td>
<td>0.0380</td>
<td>2.7000e-004</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>0.0000</td>
<td>49.2697</td>
<td>49.2697</td>
<td>9.0000e-004</td>
<td>49.5696</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.9800e-003</td>
<td>0.0453</td>
<td>0.0380</td>
<td>2.7000e-004</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>3.4400e-003</td>
<td>0.0000</td>
<td>49.2697</td>
<td>49.2697</td>
<td>9.0000e-004</td>
<td>49.5696</td>
<td></td>
</tr>
</tbody>
</table>

5.3 Energy by Land Use - Electricity

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Electricity Use kWh/yr</th>
<th>Total CO2 MT/yr</th>
<th>CH4 MT/yr</th>
<th>N2O MT/yr</th>
<th>CO2e MT/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior High School</td>
<td>474023</td>
<td>1.269245</td>
<td>6.2400e-003</td>
<td>1.2900e-003</td>
<td>127.4554</td>
</tr>
<tr>
<td>Total</td>
<td>1.269245</td>
<td>6.2400e-003</td>
<td>1.2900e-003</td>
<td>127.4554</td>
<td></td>
</tr>
</tbody>
</table>
5.3 Energy by Land Use - Electricity

Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>kWh/yr</th>
<th>Total CO2</th>
<th>CH4 (MT/yr)</th>
<th>N2O</th>
<th>CO2e (MT/yr)</th>
<th>PM10</th>
<th>PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4 (MT/yr)</th>
<th>N2O</th>
<th>CO2e (MT/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior High School</td>
<td>474023</td>
<td>1.269245</td>
<td>6.2400e-003</td>
<td>1.2900e-003</td>
<td>1.274554</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.269245</td>
<td>6.2400e-003</td>
<td>1.2900e-003</td>
<td>1.274554</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.0 Area Detail

6.1 Mitigation Measures Area

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG (mt/yr)</th>
<th>NOx (mt/yr)</th>
<th>CO (mt/yr)</th>
<th>SO2 (mt/yr)</th>
<th>Fugitive PM10 (mt/yr)</th>
<th>Exhaust PM10 (mt/yr)</th>
<th>PM10 Total (mt/yr)</th>
<th>Fugitive PM2.5 (mt/yr)</th>
<th>Exhaust PM2.5 (mt/yr)</th>
<th>PM2.5 Total (mt/yr)</th>
<th>Bio-CO2 (mt/yr)</th>
<th>NBio-CO2 (mt/yr)</th>
<th>Total CO2 (mt/yr)</th>
<th>CH4 (mt/yr)</th>
<th>N2O (mt/yr)</th>
<th>CO2e (mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>0.2651</td>
<td>1.0000e-005</td>
<td>7.5000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4300e-003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.5100e-003</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>0.2651</td>
<td>1.0000e-005</td>
<td>7.5000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4300e-003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.5100e-003</td>
</tr>
</tbody>
</table>
6.2 Area by SubCategory

Unmitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural</td>
<td>0.0400</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>Coating</td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.2250</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>Landscaping</td>
<td>7.0000e-005</td>
<td>1.0000e-005</td>
<td>7.5000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4300e-003</td>
<td>1.4300e-003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.5100e-003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.2651</td>
<td>1.0000e-005</td>
<td>7.5000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4300e-003</td>
<td>1.4300e-003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.5100e-003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural</td>
<td>0.0400</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>Coating</td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.2250</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>Landscaping</td>
<td>7.0000e-005</td>
<td>1.0000e-005</td>
<td>7.5000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4300e-003</td>
<td>1.4300e-003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.5100e-003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.2651</td>
<td>1.0000e-005</td>
<td>7.5000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4300e-003</td>
<td>1.4300e-003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.5100e-003</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.0 Water Detail
7.1 Mitigation Measures Water

<table>
<thead>
<tr>
<th>Category</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmitigated</td>
<td>4.8672</td>
<td>1.6600e-003</td>
<td>9.6000e-004</td>
<td>5.1995</td>
</tr>
</tbody>
</table>

7.2 Water by Land Use

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Indoor/Outdoor Use</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior High School</td>
<td>1.18777 / 3.05427</td>
<td>4.8672</td>
<td>1.6600e-003</td>
<td>9.6000e-004</td>
<td>5.1995</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4.8672</td>
<td>1.6600e-003</td>
<td>9.6000e-004</td>
<td>5.1995</td>
</tr>
</tbody>
</table>
7.2 Water by Land Use

Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Indoor/Outdoor Use</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>4.8672</td>
<td>1.6700e-003</td>
<td>9.6000e-004</td>
<td>5.2000</td>
</tr>
</tbody>
</table>

8.0 Waste Detail

8.1 Mitigation Measures Waste

<table>
<thead>
<tr>
<th>Category/Year</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>15.2000</td>
<td>0.8983</td>
<td>0.0000</td>
<td>34.0641</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>15.2000</td>
<td>0.8983</td>
<td>0.0000</td>
<td>34.0641</td>
</tr>
</tbody>
</table>
8.2 Waste by Land Use

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Waste Disposed</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior High School</td>
<td>74.88</td>
<td>15.2000</td>
<td>0.8983</td>
<td>0.0000</td>
<td>34.0641</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15.2000</td>
<td>0.8983</td>
<td>0.0000</td>
<td>34.0641</td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Waste Disposed</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior High School</td>
<td>74.88</td>
<td>15.2000</td>
<td>0.8983</td>
<td>0.0000</td>
<td>34.0641</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15.2000</td>
<td>0.8983</td>
<td>0.0000</td>
<td>34.0641</td>
</tr>
</tbody>
</table>

9.0 Operational Offroad
10.0 Vegetation