1. The graph of \(f' \), the derivative \(f \), is shown above for \(-2 \leq x \leq 5\). On what intervals is \(f \) increasing?

 (A) \([-2. 1]\) only

 (B) \([-2, 3]\)

 (C) \([3, 5]\) only

 (D) \([0, 1.5]\) and \([3, 5]\)

 (E) \([-2, -1], [1.2], \) and \([4, 5]\)

 \[f(x) = \begin{cases}
 \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2 \\
 1 & \text{if } x = 2
 \end{cases} \]

2. Let \(f \) be the function defined above. Which of the following statements about \(f \) are true?

 I. \(f \) has a limit at \(x = 2 \)

 II. \(f \) is continuous at \(x = 2 \).

 III. \(f \) is differentiable at \(x = 2 \).

 (A) I only

 (B) II only

 (C) III only

 (D) I and II only

 (E) I, II, and III

3. If \(f(x) = \cos(3x) \), then \(f'(\frac{\pi}{9}) = \)

 (A) \(\frac{3\sqrt{3}}{2} \)

 (B) \(\frac{\sqrt{3}}{2} \)

 (C) \(-\frac{\sqrt{3}}{2} \)

 (D) \(-\frac{3}{2} \)

 (E) \(-\frac{3\sqrt{3}}{2} \)

4. In the \(xy \)-plane, the line \(x + y = k \), where \(k \) is a constant, is tangent to the graph of \(y = x^2 + 3x + 1 \). What is the value of \(k \)?

 (A) \(-3\)

 (B) \(-2\)

 (C) \(-1\)

 (D) \(0\)

 (E) \(1\)
The table gives selected values of the velocity $v(t)$ of a particle moving along the x-axis. At time $t = 0$, the particle is at the origin. Which of the following could be the graph of the position $s(t)$ of the particle for $0 \leq t \leq 4$?

If $\sin(xy) = x$, then \(\frac{dy}{dx} = \)

(A) \(\frac{1}{\cos(xy)} \)

(B) \(\frac{1}{x \cos(xy)} \)

(C) \(\frac{1 - \cos(xy)}{\cos(xy)} \)

(D) \(\frac{1 - y \cos(xy)}{x \cos(xy)} \)

(E) \(\frac{y(1 - \cos(xy))}{x} \)

If $f(x) = (x-1)(x^2 + 2)^3$, then $f'(x) =$

(A) $6x(x^2 + 2)^2$

(B) $6x(x-1)(x^2 + 2)^2$

(C) $(x^2 + 2)^2(x^2 + 3x - 1)$

(D) $(x^2 + 2)^2(7x^2 - 6x + 2)$

(E) $-3(x-1)(x^2 + 2)^2$

For values of h very close to 0, which of the following best approximates $f(x) = \frac{\tan(x+h) - \tan x}{h}$?

(A) $\sin x$

(B) $\frac{\sin x}{x}$

(C) $\frac{\tan x}{x}$

(D) $\sec x$

(E) $\sec^2 x$
Let f be the function defined above, where c and d are constants. If f is differentiable at $x = 2$, what is the value of $c + d$?

(A) -4 (B) -2 (C) 0 (D) 2 (E) 4

10. The graph of a function f is shown above. Which of the following could be the graph of f', the derivative of f?

(A)
(B)
(C)
(D)
(E)

9. $f(x) = \begin{cases} cx + d & \text{for } x \leq 2 \\ x^2 - cx & \text{for } x > 2 \end{cases}$