2. A particle starts at point \(A \) on the positive \(x \)-axis at time \(t = 0 \) and travels along the curve from \(A \) to \(B \) to \(C \) to \(D \), as shown above. The coordinates of the particle's position \((x(t), y(t))\) are differentiable functions of \(t \), where \(x'(t) = \frac{dx}{dt} = -9\cos\left(\frac{\pi t}{6}\right)\sin\left(\frac{\pi\sqrt{t} + 1}{2}\right) \) and \(y'(t) = \frac{dy}{dt} \) is not explicitly given. At time \(t = 9 \), the particle reaches its final position at point \(D \) on the positive \(x \)-axis.

(a) At point \(C \), is \(\frac{dy}{dt} \) positive? At point \(C \), is \(\frac{dx}{dt} \) positive? Give a reason for each answer.
(b) The slope of the curve is undefined at point \(B \). At what time \(t \) is the particle at point \(B \)?
(c) The line tangent to the curve at the point \((x(8), y(8))\) has equation \(y = \frac{5}{9} x - 2 \). Find \(\frac{dx}{dt} \) and \(\frac{dy}{dt} \) at this point.
(d) How far apart are points \(A \) and \(D \), the initial and final positions, respectively, of the particle?