The slope of the normal line at \((x_1, y_1)\) is \(-\frac{a^2 y_1}{b^2 x_1}\).

Since the normal line passes through \((0, 0)\) and \((x_1, y_1)\), its slope must be \(-\frac{y_1}{x_1}\).

Now, \(\frac{a^2 y_1}{b^2 x_1} = \frac{y_1}{x_1} \Rightarrow a^2 = b^2\). Thus, the ellipse is a circle.

52. Without loss of generality, let the hyperbola have the equation \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\), the coordinates of \(P\) be \((x_1, y_1)\), and the equations of the asymptotes be \(y = \pm \frac{b}{a}x\).

From Exercise 50, the equation of the tangent line is \(\frac{x_1 x}{a^2} - \frac{y_1 y}{b^2} = 1\). First, consider the point of intersection with the asymptote \(y = -\frac{b}{a}x\) at \(Q(x_Q, y_Q)\). Solving the equations simultaneously gives \(\frac{x_1 x}{a^2} - \left(-\frac{b}{a}x\right)\left(\frac{y_1}{b}\right) = 1 \Rightarrow x_Q = \frac{a^2 b}{bx_1 + a y_1}\). Then, \(y_Q = -\frac{b}{a}x_Q = -\frac{a b^2}{bx_1 + a y_1}\). Second, consider the point of intersection with the asymptote \(y = \frac{b}{a}x\) at \(R(x_R, y_R)\). In a similar manner, \(x_R = \frac{a^2 b}{bx_1 - a y_1}\) and \(y_R = \frac{a b^2}{bx_1 - a y_1}\). The first coordinate for the midpoint of \(QR\) is \(\frac{1}{2}(x_Q + x_R) = \frac{1}{2}\left[\frac{a^2 b^2}{bx_1} - \frac{a^2 b^2}{a y_1}\right] = \frac{a^2 b^2 x_1}{a^2 b^2 - b^2 y_1}\) (since \((x_1, y_1)\) are on the hyperbola) \(= x_1\).

In a similar manner, \(\frac{1}{2}(y_Q + y_R) = y_1\). Hence, the midpoint is \(P(x_1, y_1)\).
10. Let \(z \) denote the diameter.

\[
A = \frac{1}{4} \pi z^2 \Rightarrow \frac{dA}{dt} = \frac{1}{2} \pi z \frac{dz}{dt} = \frac{1}{2} \pi (30)(0.01) = 0.15 \pi \approx 0.471 \text{ cm}^2/\text{min}.
\]

10. \(A = \pi r^2 \Rightarrow \frac{dA}{dt} = 2\pi r \frac{dr}{dt} = 2\pi(150)(6) = 1800\pi \approx 5655 \text{ ft}^2/\text{min}.\)

11. \{ diameter \(= 18 \text{ in.} \Leftrightarrow \) radius \(= 9 \text{ in.} = \frac{3}{4} \text{ ft.}\}

\[
V = \frac{4}{3} \pi r^3 \Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{1}{4\pi r^2} \frac{dV}{dt} = \frac{1}{4\pi \left(\frac{3}{4}\right)^2} \frac{20}{9\pi} \approx 0.707 \text{ ft/min}.
\]

12. \(V = \frac{4}{3} \pi r^3 \Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} = 4\pi(10)^2\left(-\frac{4}{15}\right) = \frac{320\pi}{9} \approx -111.7 \text{ in.}^3/\text{min}.\)

13. Let \(z \) denote the distance between the base of the building and the bottom of the ladder, and \(y \) denote the distance between the base of the building and the top of the ladder. \(z^2 + y^2 = 400 \Rightarrow z = \sqrt{336} \text{ when } y = 8 \) and

\[
2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0 \Rightarrow \frac{dx}{dt} = -\frac{y}{x} \frac{dy}{dt} = -\frac{\sqrt{336}}{8}(3) = -\frac{3}{8}\sqrt{336} \approx -6.9 \text{ ft/sec}.
\]

14. Let \(z \) denote the distance of the first girl east of \(A \), \(y \) the distance of the second girl north of \(A \), and \(x \) the distance between the girls.

\[
z^2 = x^2 + y^2 \Rightarrow 2z \frac{dz}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt} \Rightarrow \frac{dz}{dt} = \frac{1}{2} \left(\frac{dx}{dt} + \frac{dy}{dt} \right).
\]

\[
x = 10 \text{ ft/sec (120 sec)} = 1200 \text{ ft}, \ y = 8 \text{ ft/sec (60 sec)} = 480 \text{ ft} \Rightarrow z = 120\sqrt{116} \text{ ft}.
\]

\[
\frac{dx}{dt} = 10 \text{ and } \frac{dy}{dt} = 8 \Rightarrow \frac{dz}{dt} = \frac{1}{2} \frac{1}{120\sqrt{116}} \left[1200(10) + 480(8) \right] = \frac{132}{\sqrt{116}} \approx 12.3 \text{ ft/sec}.
\]

15. Let \(z \) denote the distance of the tip of the shadow from the base of the pole, \(y \) the distance of the boy from the base, and \(x \) the length of the shadow.

\[
z = x - y = \frac{dx}{dt} = \frac{dx}{dt} - \frac{dy}{dt}. \text{ By similar triangles, } \frac{x}{16} = \frac{x - y}{5} = \frac{z}{16} y \Rightarrow
\]

\[
\frac{dx}{dt} = \frac{16}{11} \frac{dy}{dt} = \frac{16}{11}(4) \approx 5.82 \text{ ft/sec}. \text{ Thus, } \frac{dx}{dt} = \frac{64}{11} - 4 = \frac{20}{11} \approx 1.82 \text{ ft/sec}.
\]

16. Let \(z \) denote the horizontal distance between the bow of the boat and the dock and \(L \) the length of rope between the boat and the pulley.

\[
L^2 = z^2 + y^2 \Rightarrow 2L \frac{dL}{dt} = 2z \frac{dx}{dt} \Rightarrow \frac{dx}{dt} = \frac{L}{z} \frac{dL}{dt} = \frac{\sqrt{674}}{25}(-2) = -\frac{2}{25}\sqrt{674} \approx -2.08 \text{ ft/sec (negative since } \frac{z}{x} \text{ is decreasing)}.
\]

17. Let \(T \) denote the thickness of the ice and note that the radius is 120 in. The volume of the ice (outer hemisphere - inner hemisphere) is

\[
V = \frac{2}{3}\pi(120 + T)^3 - \frac{2}{3}\pi(120)^3 \Rightarrow \frac{dV}{dt} = 2\pi(120 + T)^2 \frac{dT}{dt} = 2\pi(120 + 2)^2\left(-\frac{1}{4}\right) = -7442\pi \approx -23,380 \text{ in.}^3/\text{hr}.
\]

18. Since \(r = h \), \(V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi h^3 \).

\[
\frac{dV}{dt} = \pi h^2 \frac{dh}{dt} = \pi(10)^2(6) = 600\pi \approx 1885 \text{ in.}^3/\text{min}.
\]
19. Let \(L \) denote the length of string and \(x \) the horizontal distance of the kite from the boy. \(L^2 = x^2 + 100^2 \implies 2L \frac{dL}{dt} = 2x \frac{dx}{dt} \Rightarrow \frac{dx}{dt} = \frac{L \frac{dL}{dt}}{x} = \frac{125}{15} = \frac{10}{3} \approx 3.33 \text{ ft/sec.} \)

20. Let \(h \) denote the height of the balloon and \(L \) the length of the rope. \(L^2 = h^2 + 20^2 \implies 2L \frac{dL}{dt} = 2h \frac{dh}{dt} \Rightarrow \frac{dh}{dt} = \frac{L \frac{dL}{dt}}{h} = \frac{\frac{500}{\sqrt{249,600}}}{5} = \frac{2500}{\sqrt{249,600}} \approx 5.00 \text{ ft/sec.} \)

21. \(pv = c \implies p \frac{dv}{dt} + v \frac{dp}{dt} = 0 \Rightarrow \frac{dp}{dt} = -\frac{v}{p} \frac{dv}{dt} = -\frac{75}{50}(-2) = 5 \text{ in}^3/\text{min (increasing)} \).

22. Let \(z \) denote the diameter of the cable in inches.

Hence, \(A = \pi z (1200) \) is the curved surface area.

\[
\frac{dA}{dt} = 1200 \pi \frac{dz}{dt} \Rightarrow \frac{dz}{dt} = \frac{1}{1200 \pi} \frac{dA}{dt} = \frac{1}{1200 \pi} (750) = \frac{5}{8 \pi} \approx 0.1989 \text{ in./yr.}
\]

23. Let \(h \) denote the depth of the water. The area of the submerged triangular portion is

\[
A = \frac{1}{2} \left(\frac{2h}{\sqrt{3}} \right) h = \frac{h^2}{\sqrt{3}} \implies \frac{dV}{dt} = 8A = \frac{8h^2}{\sqrt{3}} \Rightarrow \frac{dh}{dt} = \frac{1}{16h} \frac{dV}{dt} = \frac{1}{16h} \left(\frac{5}{92} \right) = \frac{15}{32} \approx 0.81 \text{ ft/min.}
\]

24. Using the same notation as in Exercise 23, \(A = \frac{1}{2} h^2 \) and \(V = 4h^3 \Rightarrow \frac{dV}{dt} = 8Ah \frac{dh}{dt} \Rightarrow \frac{dh}{dt} = \frac{1}{8h} \frac{dV}{dt} = \frac{1}{8} \left(\frac{5}{92} \right) = 0.0375 \text{ ft/min.} \)

25. Let \(x \) denote the length of a side.

\[
A = \frac{1}{4} x^2 \Rightarrow \frac{dA}{dt} = \frac{1}{2} x \frac{dx}{dt} \Rightarrow \frac{dx}{dt} = \frac{2}{\sqrt{3} x} \frac{dA}{dt}. \quad A = 200, \quad x = \left(\frac{800}{3} \right)^{1/2}, \quad \text{and} \quad \frac{dA}{dt} = -4 \Rightarrow \frac{dx}{dt} = \frac{2}{\sqrt{3} \left(\frac{800}{3} \right)^{1/2}} (-4) = -\sqrt{2} \approx -0.2149 \text{ cm/min.}
\]

26. \(V = \frac{4}{3} \pi r^3 \Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{1}{4\pi r^2} \frac{dV}{dt}. \quad V = 400, \quad r = \sqrt[3]{300} \pi, \quad \text{and} \quad \frac{dV}{dt} = -10 \Rightarrow \frac{dr}{dt} = \frac{1}{4\pi \left(\sqrt[3]{300} \pi \right)^2} (-10) = -\frac{5}{2} \frac{\pi}{300} \approx -0.038 \text{ ft/min.} \)

27. \(C = 2\pi r \Rightarrow \frac{dC}{dt} = 2\pi \frac{dr}{dt} = 2\pi (0.5) = \pi \approx 3.14 \text{ m/sec.} \)

Note: \(C \) is linear in \(r \) so its rate of change is constant.

28. Let \(x \) denote the runner's distance from third base and \(h \) her distance from home plate. \(h^2 = x^2 + 60^2 \Rightarrow 2h \frac{dh}{dt} = 2x \frac{dx}{dt} \Rightarrow \frac{dh}{dt} = \frac{x}{h} \frac{dx}{dt} = \frac{20}{\sqrt{4000}} (-24) = \frac{-24}{10} \approx -7.59 \text{ ft/sec.} \)

29. \(\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \Rightarrow \frac{1}{R} \frac{dR}{dt} = -\frac{1}{R_1^2} \frac{dR_1}{dt} - \frac{1}{R_2^2} \frac{dR_2}{dt}. \quad R_1 = 30 \text{ and } R_2 = 90 \Rightarrow R = \frac{45}{2} \text{ ft.} \quad \frac{dR_1}{dt} = 0.01 \text{ and } \frac{dR_2}{dt} = 0.02 \Rightarrow \frac{dR}{dt} = -\left(\frac{45}{2} \right)^2 \left[-\frac{1}{(30)^2} (100) - \frac{1}{(90)^2} (0) \right] = \frac{11}{1600} = 0.0006875 \text{ ohm/sec.} \)